亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TensorFHE: Achieving Practical Computation on Encrypted Data Using GPGPU

计算机科学 图形处理单元的通用计算 专用集成电路 云计算 同态加密 加密 架空(工程) 服务器 嵌入式系统 计算 并行计算 绘图 操作系统 算法
作者
Shengyu Fan,Zhiwei Wang,Weizhi Xu,Rui Hou,Dan Meng,Mingzhe Zhang
标识
DOI:10.1109/hpca56546.2023.10071017
摘要

In the cloud computing era, privacy protection is becoming pervasive in a broad range of applications (e.g., machine learning, data mining, etc). Fully Homomorphic Encryption (FHE) is considered the perfect solution as it enables privacy-preserved computation on untrusted servers. Unfortunately, the prohibitive performance overhead blocks the wide adoption of FHE (about 10, 000× slower than the normal computation). As heterogeneous architectures have gained remarkable success in several fields, achieving high performance for FHE with specifically designed accelerators seems to be a natural choice. Until now, most FHE accelerators have focused on efficiently implementing one FHE operation at a time based on ASIC and with significantly higher performance than GPU and FPGA. However, recent state-of-the-art FHE accelerators rely on an expensive and large on-chip storage and a high-end manufacturing process (i.e., 7nm), which increase the cost of FHE adoption.In this paper, we propose TensorFHE, an FHE acceleration solution based on GPGPU for real applications on encrypted data. TensorFHE utilizes Tensor Core Units (TCUs) to boost the computation of Number Theoretic Transform (NTT), which is the part of FHE with highest time-cost. Moreover, TensorFHE focuses on performing as many FHE operations as possible in a certain time period rather than reducing the latency of one operation. Based on such an idea, TensorFHE introduces operation-level batching to fully utilize the data parallelism in GPGPU. We experimentally prove that it is possible to achieve comparable performance with GPGPU as with state-of-the-art ASIC accelerators. TensorFHE performs 913 KOPS and 88 KOPS for NTT and HMULT (key FHE kernels) within NVIDIA A100 GPGPU, which is 2.61× faster than state-of-the-art FHE implementation on GPGPU; Moreover, TensorFHE provides comparable performance to the ASIC FHE accelerators, which makes it even 2.9× faster than the F1+ with a specific workload. Such a pure software acceleration based on commercial hardware with high performance can open up usage of state-of-the-art FHE algorithms for a broad set of applications in real systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜发带完成签到 ,获得积分0
39秒前
46秒前
48秒前
51秒前
荆棘鸟发布了新的文献求助10
53秒前
打打应助荆棘鸟采纳,获得10
58秒前
1分钟前
1分钟前
忘忧Aquarius完成签到,获得积分10
1分钟前
楚楚发布了新的文献求助10
1分钟前
善学以致用应助楚楚采纳,获得10
1分钟前
2分钟前
2分钟前
kk发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
荆棘鸟发布了新的文献求助10
2分钟前
王强发布了新的文献求助10
2分钟前
点心完成签到,获得积分10
2分钟前
2分钟前
烟花应助kk采纳,获得10
2分钟前
等待的伟帮完成签到 ,获得积分10
2分钟前
ding应助yuchi采纳,获得10
2分钟前
ch完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科目三应助王强采纳,获得10
3分钟前
wjhhhh0317发布了新的文献求助10
3分钟前
酷波er应助年轻的烧鹅采纳,获得10
3分钟前
英姑应助王强采纳,获得10
3分钟前
xttju2014应助王强采纳,获得10
3分钟前
bkagyin应助王强采纳,获得10
4分钟前
4分钟前
4分钟前
王胖胖完成签到,获得积分20
4分钟前
王胖胖发布了新的文献求助10
4分钟前
高分求助中
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4099014
求助须知:如何正确求助?哪些是违规求助? 3636583
关于积分的说明 11525642
捐赠科研通 3346382
什么是DOI,文献DOI怎么找? 1839163
邀请新用户注册赠送积分活动 906496
科研通“疑难数据库(出版商)”最低求助积分说明 823819