Modelling and optimisation of TPMS-based lattices subjected to high strain-rate impact loadings

网络拓扑 分离式霍普金森压力棒 有限元法 航空航天 吸收效率 材料科学 机械工程 结构工程 拓扑(电路) 计算机科学 应变率 工程类 复合材料 动物科学 航空航天工程 电气工程 操作系统 生物
作者
Rafael Santiago,Henrique Ramos,Sara AlMahri,Omar Banabila,Haleimah Alabdouli,Dong­-Wook Lee,Alia Ruzanna Aziz,Nitul S. Rajput,Marcı́lio Alves,Zhongwei Guan
出处
期刊:International Journal of Impact Engineering [Elsevier]
卷期号:177: 104592-104592 被引量:47
标识
DOI:10.1016/j.ijimpeng.2023.104592
摘要

Lattices structures show promising applications in aerospace, biomedical and defence sectors, in which high energy absorption and lightweight structures are required. This work studies Triply Periodical Minimal Surfaces (TPMS) with potential for impact engineer applications, focusing on material characterisation, modelling and performance optimisation. For this purpose, stainless steel 316 L lattice samples made by additive manufacturing were tested in a wide range of strain-rates and various building directions using a universal testing machine and Split Hopkinson Pressure Bar, equipped with a Digital Image Correlation system. Then, the obtained properties were implemented in an explicit finite element model and validated against experimental results related to different TMPS topologies and impact scenarios. A theoretical model is also proposed to predict the TPMS-based lattices quasi-static and impact responses up to the densification threshold. Finally, the validated numerical models were used to predict the behaviour of several functionally graded TPMS topologies, indicating the architectures with superior impact performance. The graded topologies were then manufactured and experimentally tested. The results indicate that graded topologies exhibit up to 18% higher energy absorption when compared to their non-graded counterparts. The theoretical and numerical models developed in this paper provide an effective approach for designing and predicting high energy absorption architectures subjected to quasi-static and impact loadings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安AN发布了新的文献求助20
1秒前
1秒前
1秒前
2秒前
2秒前
nipoo完成签到 ,获得积分10
2秒前
小星发布了新的文献求助10
2秒前
盛夏完成签到,获得积分10
2秒前
zoey完成签到,获得积分10
3秒前
3秒前
3秒前
七七完成签到,获得积分10
4秒前
4秒前
诚心的访蕊完成签到 ,获得积分10
4秒前
吃人陈发布了新的文献求助10
4秒前
4秒前
啊泽ovo完成签到,获得积分10
5秒前
科学低调修仙完成签到,获得积分10
5秒前
John发布了新的文献求助10
5秒前
乐乐发布了新的文献求助10
5秒前
刻苦的绿真完成签到 ,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
FashionBoy应助猪猪hero采纳,获得10
7秒前
天天快乐应助科研狗采纳,获得10
8秒前
qingqingdandan完成签到 ,获得积分10
8秒前
华仔应助美好斓采纳,获得10
8秒前
tutu发布了新的文献求助10
8秒前
打打应助Q_123采纳,获得10
8秒前
9秒前
大模型应助顾文采纳,获得10
9秒前
情怀应助dongdong采纳,获得10
9秒前
Orange应助zooro采纳,获得10
9秒前
xin发布了新的文献求助10
9秒前
gyy完成签到,获得积分10
10秒前
10秒前
罗汉发布了新的文献求助10
10秒前
yohana发布了新的文献求助10
10秒前
852应助biiii采纳,获得10
10秒前
safsafdfasf发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665433
求助须知:如何正确求助?哪些是违规求助? 4876596
关于积分的说明 15113729
捐赠科研通 4824584
什么是DOI,文献DOI怎么找? 2582801
邀请新用户注册赠送积分活动 1536780
关于科研通互助平台的介绍 1495335