已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence

衰老 转录组 列线图 癌症 生物 癌症研究 免疫疗法 免疫系统 癌症免疫疗法 肿瘤微环境 基因签名 癌细胞 免疫学 医学 生物信息学 肿瘤科 基因表达 基因 细胞生物学 遗传学
作者
Zhengquan Wu,Bernd Uhl,Olivier Gires,Christoph A. Reichel
出处
期刊:Journal of Biomedical Science [BioMed Central]
卷期号:30 (1) 被引量:35
标识
DOI:10.1186/s12929-023-00915-5
摘要

The microvascular endothelium inherently controls nutrient delivery, oxygen supply, and immune surveillance of malignant tumors, thus representing both biological prerequisite and therapeutic vulnerability in cancer. Recently, cellular senescence emerged as a fundamental characteristic of solid malignancies. In particular, tumor endothelial cells have been reported to acquire a senescence-associated secretory phenotype, which is characterized by a pro-inflammatory transcriptional program, eventually promoting tumor growth and formation of distant metastases. We therefore hypothesize that senescence of tumor endothelial cells (TEC) represents a promising target for survival prognostication and prediction of immunotherapy efficacy in precision oncology.Published single-cell RNA sequencing datasets of different cancer entities were analyzed for cell-specific senescence, before generating a pan-cancer endothelial senescence-related transcriptomic signature termed EC.SENESCENCE.SIG. Utilizing this signature, machine learning algorithms were employed to construct survival prognostication and immunotherapy response prediction models. Machine learning-based feature selection algorithms were applied to select key genes as prognostic biomarkers.Our analyses in published transcriptomic datasets indicate that in a variety of cancers, endothelial cells exhibit the highest cellular senescence as compared to tumor cells or other cells in the vascular compartment of malignant tumors. Based on these findings, we developed a TEC-associated, senescence-related transcriptomic signature (EC.SENESCENCE.SIG) that positively correlates with pro-tumorigenic signaling, tumor-promoting dysbalance of immune cell responses, and impaired patient survival across multiple cancer entities. Combining clinical patient data with a risk score computed from EC.SENESCENCE.SIG, a nomogram model was constructed that enhanced the accuracy of clinical survival prognostication. Towards clinical application, we identified three genes as pan-cancer biomarkers for survival probability estimation. As therapeutic perspective, a machine learning model constructed on EC.SENESCENCE.SIG provided superior pan-cancer prediction for immunotherapy response than previously published transcriptomic models.We here established a pan-cancer transcriptomic signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
6秒前
竹焚完成签到 ,获得积分10
6秒前
7秒前
Efaith完成签到,获得积分10
8秒前
9秒前
科研通AI5应助一一采纳,获得10
9秒前
zhaosiqi完成签到,获得积分10
9秒前
33完成签到 ,获得积分10
10秒前
烟寒发布了新的文献求助10
10秒前
默上迁完成签到,获得积分10
11秒前
kk完成签到,获得积分10
11秒前
landolu发布了新的文献求助10
11秒前
DLY677完成签到,获得积分10
11秒前
12秒前
orixero应助ronnie采纳,获得10
13秒前
15秒前
泡泡完成签到 ,获得积分10
15秒前
头孢克肟发布了新的文献求助10
16秒前
16秒前
WaitP应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得30
17秒前
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得30
17秒前
慕青应助科研通管家采纳,获得10
17秒前
YHDing发布了新的文献求助10
17秒前
wanci应助小程同学采纳,获得10
19秒前
20秒前
打打应助烟寒采纳,获得10
21秒前
滑稽剑客发布了新的文献求助10
21秒前
21秒前
21秒前
randomname发布了新的文献求助10
24秒前
义气山柏完成签到,获得积分10
24秒前
小蘑菇应助zhangpeng采纳,获得10
25秒前
头孢克肟完成签到,获得积分10
28秒前
28秒前
星空发布了新的文献求助10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804012
求助须知:如何正确求助?哪些是违规求助? 3348730
关于积分的说明 10339970
捐赠科研通 3064944
什么是DOI,文献DOI怎么找? 1682817
邀请新用户注册赠送积分活动 808495
科研通“疑难数据库(出版商)”最低求助积分说明 764096