A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence

衰老 转录组 列线图 癌症 生物 癌症研究 免疫疗法 免疫系统 癌症免疫疗法 肿瘤微环境 基因签名 癌细胞 免疫学 医学 生物信息学 肿瘤科 基因表达 基因 细胞生物学 遗传学
作者
Zhengquan Wu,Bernd Uhl,Olivier Gires,Christoph A. Reichel
出处
期刊:Journal of Biomedical Science [Springer Nature]
卷期号:30 (1) 被引量:50
标识
DOI:10.1186/s12929-023-00915-5
摘要

The microvascular endothelium inherently controls nutrient delivery, oxygen supply, and immune surveillance of malignant tumors, thus representing both biological prerequisite and therapeutic vulnerability in cancer. Recently, cellular senescence emerged as a fundamental characteristic of solid malignancies. In particular, tumor endothelial cells have been reported to acquire a senescence-associated secretory phenotype, which is characterized by a pro-inflammatory transcriptional program, eventually promoting tumor growth and formation of distant metastases. We therefore hypothesize that senescence of tumor endothelial cells (TEC) represents a promising target for survival prognostication and prediction of immunotherapy efficacy in precision oncology.Published single-cell RNA sequencing datasets of different cancer entities were analyzed for cell-specific senescence, before generating a pan-cancer endothelial senescence-related transcriptomic signature termed EC.SENESCENCE.SIG. Utilizing this signature, machine learning algorithms were employed to construct survival prognostication and immunotherapy response prediction models. Machine learning-based feature selection algorithms were applied to select key genes as prognostic biomarkers.Our analyses in published transcriptomic datasets indicate that in a variety of cancers, endothelial cells exhibit the highest cellular senescence as compared to tumor cells or other cells in the vascular compartment of malignant tumors. Based on these findings, we developed a TEC-associated, senescence-related transcriptomic signature (EC.SENESCENCE.SIG) that positively correlates with pro-tumorigenic signaling, tumor-promoting dysbalance of immune cell responses, and impaired patient survival across multiple cancer entities. Combining clinical patient data with a risk score computed from EC.SENESCENCE.SIG, a nomogram model was constructed that enhanced the accuracy of clinical survival prognostication. Towards clinical application, we identified three genes as pan-cancer biomarkers for survival probability estimation. As therapeutic perspective, a machine learning model constructed on EC.SENESCENCE.SIG provided superior pan-cancer prediction for immunotherapy response than previously published transcriptomic models.We here established a pan-cancer transcriptomic signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞飞猪完成签到,获得积分20
刚刚
简简完成签到,获得积分10
1秒前
千空发布了新的文献求助10
2秒前
3秒前
3秒前
Moko完成签到 ,获得积分10
4秒前
yuwenxin完成签到,获得积分20
4秒前
我是老大应助黄文霜采纳,获得10
4秒前
碉堡了啦发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
今天看文献了吗完成签到,获得积分10
7秒前
2339822272发布了新的文献求助10
7秒前
yuwenxin发布了新的文献求助10
8秒前
xczhu完成签到,获得积分0
8秒前
完美世界应助娜娜酱油采纳,获得10
8秒前
着急的语芹完成签到,获得积分10
9秒前
啦啦完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
xianyaoz完成签到 ,获得积分0
11秒前
彭于晏应助dominic12361采纳,获得10
11秒前
早日毕业完成签到 ,获得积分10
12秒前
14秒前
king2580完成签到,获得积分20
14秒前
李琦发布了新的文献求助10
14秒前
星业辰完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
duang完成签到,获得积分10
15秒前
自由天荷完成签到,获得积分10
15秒前
Jenny发布了新的文献求助10
16秒前
16秒前
香蕉觅云应助Jankin采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
77发布了新的文献求助10
17秒前
广广广渠路完成签到,获得积分10
17秒前
叶叶叶完成签到,获得积分10
17秒前
Owen应助杨震采纳,获得30
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743234
求助须知:如何正确求助?哪些是违规求助? 5413106
关于积分的说明 15347071
捐赠科研通 4884098
什么是DOI,文献DOI怎么找? 2625582
邀请新用户注册赠送积分活动 1574482
关于科研通互助平台的介绍 1531345