Cross-level Feature Aggregation Network for Polyp Segmentation

分割 计算机科学 特征(语言学) 人工智能 模式识别(心理学) 边界(拓扑) 图像分割 尺度空间分割 基于分割的对象分类 数学 语言学 数学分析 哲学
作者
Tao Zhou,Yi Zhou,Kelei He,Chen Gong,Jian Yang,Huazhu Fu,Dinggang Shen
出处
期刊:Pattern Recognition [Elsevier]
卷期号:140: 109555-109555 被引量:170
标识
DOI:10.1016/j.patcog.2023.109555
摘要

Accurate segmentation of polyps from colonoscopy images plays a critical role in the diagnosis and cure of colorectal cancer. Although effectiveness has been achieved in the field of polyp segmentation, there are still several challenges. Polyps often have a diversity of size and shape and have no sharp boundary between polyps and their surrounding. To address these challenges, we propose a novel Cross-level Feature Aggregation Network (CFA-Net) for polyp segmentation. Specifically, we first propose a boundary prediction network to generate boundary-aware features, which are incorporated into the segmentation network using a layer-wise strategy. In particular, we design a two-stream structure based segmentation network, to exploit hierarchical semantic information from cross-level features. Furthermore, a Cross-level Feature Fusion (CFF) module is proposed to integrate the adjacent features from different levels, which can characterize the cross-level and multi-scale information to handle scale variations of polyps. Further, a Boundary Aggregated Module (BAM) is proposed to incorporate boundary information into the segmentation network, which enhances these hierarchical features to generate finer segmentation maps. Quantitative and qualitative experiments on five public datasets demonstrate the effectiveness of our CFA-Net against other state-of-the-art polyp segmentation methods. The source code and segmentation maps will be released at https://github.com/taozh2017/CFANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助Hairee采纳,获得10
1秒前
slsdy完成签到,获得积分10
1秒前
1秒前
典雅问寒应助唠叨的以冬采纳,获得10
1秒前
飞快的薯片完成签到,获得积分10
2秒前
yuanl666发布了新的文献求助20
2秒前
2秒前
4秒前
犹豫山菡完成签到,获得积分10
4秒前
简单发布了新的文献求助10
4秒前
5秒前
肥猫发布了新的文献求助30
5秒前
欢呼的乐巧完成签到,获得积分10
6秒前
时s完成签到,获得积分10
6秒前
7秒前
7秒前
Orange应助某某采纳,获得10
8秒前
科研通AI6应助yiwang采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
桐桐应助ZZ采纳,获得10
9秒前
猪皮恶人发布了新的文献求助10
10秒前
10秒前
晓晓来了发布了新的文献求助20
11秒前
Jere发布了新的文献求助30
13秒前
13秒前
Wlynn完成签到,获得积分20
13秒前
汉堡包应助默默白桃采纳,获得10
13秒前
xxfsx应助木槿花采纳,获得20
14秒前
小米nonobo发布了新的文献求助10
14秒前
纳斯达克发布了新的文献求助10
14秒前
天天快乐应助张海新采纳,获得30
16秒前
想听水星记完成签到,获得积分10
16秒前
17秒前
17秒前
QQ发布了新的文献求助10
17秒前
hzhniubility完成签到,获得积分10
17秒前
木木发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428975
求助须知:如何正确求助?哪些是违规求助? 4542495
关于积分的说明 14181264
捐赠科研通 4460186
什么是DOI,文献DOI怎么找? 2445634
邀请新用户注册赠送积分活动 1436837
关于科研通互助平台的介绍 1414040