Machine-learning-guided phase identification and hardness prediction of Al-Co-Cr-Fe-Mn-Nb-Ni-V containing high entropy alloys

高熵合金 随机森林 材料科学 人工神经网络 机器学习 人工智能 阿达布思 预测建模 计算机科学 分类器(UML) 冶金 微观结构
作者
Reliance Jain,Unhae Lee,Sumanta Samal,Nokeun Park
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:956: 170193-170193 被引量:32
标识
DOI:10.1016/j.jallcom.2023.170193
摘要

A machine learning technique based on artificial intelligence (AI) has emerged as a potential tool for accelerating the search and design of new high entropy alloys (HEAs) and predicting their mechanical properties. This study demonstrates the implementation of a cutting-edge machine learning framework integrated with optimization strategies to predict the phase formation and hardness of several HEAs, including Fe25−xCo25Ni25Cr20V5Nbx (x = 2.5, 5, 7.5, 10 at. %) HEAs. In this investigation, five machine learning (ML) models, namely Decision Trees, Random Forest (RF), Bagging, AdaBoost, and Extra Trees, were used to identify phases. Additionally, six ML models, including XGBoost, Gradient Boost, Bagging, Extra Trees, RF, and artificial neural network (ANN), were employed to predict hardness. After evaluating the performance and optimization of each model, an Extra Trees classifier (with accuracy = 0.893) and an ANN (with R2 = 0.95, and MAE = 34.91) model showed the best predictive capabilities for phase and hardness prediction, respectively. Finally, we utilized the ML-based model to predict the phase (for 16 HEA compositions) and hardness (for 12 HEA compositions) of various HEAs, after which we validated them with experiments. The Extra Trees model successfully identifies the phase of both previously reported HEAs and currently studied Fe25−xCo25Ni25Cr20V5Nbx (x = 2.5, 5, 7.5, 10 at. %) HEAs. The ANN model predicted hardness matched the experimentally measured hardness with an average error of 13.25 %. The results of our experiments are tracked with our predictions, suggesting that ML-based approaches could be helpful to design HEAs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安的松完成签到 ,获得积分10
2秒前
Fanfan完成签到 ,获得积分10
5秒前
克姑美完成签到 ,获得积分10
12秒前
Danish完成签到,获得积分10
14秒前
17秒前
chiah发布了新的文献求助10
22秒前
24秒前
moumou完成签到,获得积分10
28秒前
跳脚的虾完成签到 ,获得积分10
40秒前
TIX完成签到 ,获得积分10
44秒前
SH123完成签到 ,获得积分10
51秒前
sweet雪儿妞妞完成签到 ,获得积分10
54秒前
CipherSage应助雪上一枝蒿采纳,获得10
58秒前
俊逸的盛男完成签到 ,获得积分10
1分钟前
Serena完成签到 ,获得积分10
1分钟前
1分钟前
文静的惜雪完成签到 ,获得积分10
1分钟前
bo完成签到 ,获得积分10
1分钟前
1分钟前
xmyang完成签到,获得积分10
1分钟前
流星雨完成签到 ,获得积分10
1分钟前
knight7m完成签到 ,获得积分10
1分钟前
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
DONGmumu完成签到 ,获得积分10
1分钟前
我独舞完成签到 ,获得积分10
2分钟前
2分钟前
fhw完成签到 ,获得积分10
2分钟前
王珺完成签到,获得积分10
2分钟前
youngbin完成签到 ,获得积分10
2分钟前
lili完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
斯文败类应助科研通管家采纳,获得30
2分钟前
2分钟前
Young完成签到 ,获得积分10
2分钟前
2分钟前
zhying55发布了新的文献求助10
3分钟前
digger2023完成签到 ,获得积分10
3分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825038
求助须知:如何正确求助?哪些是违规求助? 3367362
关于积分的说明 10445297
捐赠科研通 3086738
什么是DOI,文献DOI怎么找? 1698238
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769911