Machine learning predictive model for electronic slurries for smart grids

计算机科学 组分(热力学) 机器学习 人工智能 过程(计算) 工业工程 工程类 操作系统 物理 热力学
作者
Xiaofeng Liu,Yan Zhiyong,Fangling Leng,Yubin Bao,Yijie Huang
出处
期刊:Frontiers in Energy Research [Frontiers Media SA]
卷期号:10 被引量:2
标识
DOI:10.3389/fenrg.2022.1031118
摘要

Electricity is a fundamental energy that is essential to the growth of industrialization and human livelihood. Electric power resources can be used to meet living and production needs more steadily, effectively, and intelligently with the help of an intelligent power grid. The accuracy and stability of component requirements have increased due to the rapid growth of intelligent power networks. One of the fundamental components for component production is electronic slurry, so optimizing electronic paste’s properties is crucial for smart grids. In the field of materials science, the process of discovering new materials is drawn out and chance-based. The traditional computation process takes a very long time. Scientists have recently applied machine learning techniques to anticipate material properties and hasten the creation of novel materials. These techniques have proven to offer amazing benefits in a variety of fields. Machine learning techniques, such as the cross-validated nuclear ridge regression algorithm to predict double perovskite structure materials and the machine learning algorithm to predict the band gap value of chalcopyrite structure materials, have demonstrated excellent performance in predicting the band gap value of some specific material structures. The performance value of other structural materials cannot be predicted directly by this targeted prediction model; it can only forecast the band gap value of a single structural material. This study presents two model techniques for dividing data sets into element kinds using regression models and dividing data sets into clusters using regression models, both of which are based on the fundamental theory of physical properties, band gap theory. This plan is more efficient than the classification-regression model. The MAE dropped by 0.0455, the MSE dropped by 0.0425, and the R2 rose by 0.022. The effectiveness of machine learning in forecasting the material band gap value has increased, and the model trained by this design strategy to predict the material band gap value is more reliable than previously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
庆庆完成签到,获得积分10
1秒前
舒适新梅完成签到,获得积分10
2秒前
2秒前
wwb完成签到,获得积分10
4秒前
情怀应助璎琅玉微凉采纳,获得10
5秒前
Owen应助如瑶采纳,获得10
5秒前
风趣夜山发布了新的文献求助10
5秒前
5秒前
种地小能手~完成签到 ,获得积分10
7秒前
十七完成签到,获得积分10
7秒前
一期一会发布了新的文献求助10
7秒前
deletelzr完成签到,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
田様应助机智元霜采纳,获得10
11秒前
国色不染尘完成签到,获得积分10
11秒前
gmy完成签到,获得积分10
12秒前
12秒前
12秒前
田様应助zhang-leo采纳,获得10
13秒前
852应助AKAYI采纳,获得30
13秒前
英俊的铭应助小鱼采纳,获得10
14秒前
追逐完成签到 ,获得积分10
15秒前
慕青应助李联洪采纳,获得10
15秒前
科研老兵完成签到,获得积分10
16秒前
如瑶发布了新的文献求助10
16秒前
17秒前
momo发布了新的文献求助10
18秒前
18秒前
庆庆发布了新的文献求助10
18秒前
lsc应助JeanetteJin采纳,获得10
18秒前
习习完成签到 ,获得积分10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480459
求助须知:如何正确求助?哪些是违规求助? 4581574
关于积分的说明 14381235
捐赠科研通 4510152
什么是DOI,文献DOI怎么找? 2471660
邀请新用户注册赠送积分活动 1458083
关于科研通互助平台的介绍 1431812