Prediction of Hemorrhagic Complication after Thrombolytic Therapy Based on Multimodal Data from Multiple Centers: An Approach to Machine Learning and System Implementation

队列 医学 逻辑回归 支持向量机 机器学习 溶栓 随机森林 人工智能 并发症 计算机科学 内科学 心肌梗塞
作者
Shaoguo Cui,Haojie Song,Huanhuan Ren,Xi Wang,Zheng Xie,Hao Wen,Yongmei Li
出处
期刊:Journal of Personalized Medicine [Multidisciplinary Digital Publishing Institute]
卷期号:12 (12): 2052-2052 被引量:8
标识
DOI:10.3390/jpm12122052
摘要

Hemorrhagic complication (HC) is the most severe complication of intravenous thrombolysis (IVT) in patients with acute ischemic stroke (AIS). This study aimed to build a machine learning (ML) prediction model and an application system for a personalized analysis of the risk of HC in patients undergoing IVT therapy. We included patients from Chongqing, Hainan and other centers, including Computed Tomography (CT) images, demographics, and other data, before the occurrence of HC. After feature engineering, a better feature subset was obtained, which was used to build a machine learning (ML) prediction model (Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGB)), and then evaluated with relevant indicators. Finally, a prediction model with better performance was obtained. Based on this, an application system was built using the Flask framework. A total of 517 patients were included, of which 332 were in the training cohort, 83 were in the internal validation cohort, and 102 were in the external validation cohort. After evaluation, the performance of the XGB model is better, with an AUC of 0.9454 and ACC of 0.8554 on the internal validation cohort, and 0.9142 and ACC of 0.8431 on the external validation cohort. A total of 18 features were used to construct the model, including hemoglobin and fasting blood sugar. Furthermore, the validity of the model is demonstrated through decision curves. Subsequently, a system prototype is developed to verify the test prediction effect. The clinical decision support system (CDSS) embedded with the XGB model based on clinical data and image features can better carry out personalized analysis of the risk of HC in intravenous injection patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助zgd采纳,获得10
1秒前
1秒前
1秒前
小董完成签到,获得积分10
1秒前
1秒前
赘婿应助激情的含巧采纳,获得10
1秒前
踏雪飞鸿发布了新的文献求助10
1秒前
knight7m完成签到 ,获得积分10
2秒前
852应助clown采纳,获得10
3秒前
秋山柳发布了新的文献求助10
3秒前
传奇3应助Una采纳,获得10
4秒前
孝顺的青筠完成签到,获得积分20
4秒前
4秒前
1234发布了新的文献求助10
5秒前
乒坛巨人完成签到 ,获得积分0
5秒前
慕青应助阿宝采纳,获得10
5秒前
情怀应助曹梦龙采纳,获得10
5秒前
Jiayou Zhang完成签到,获得积分10
5秒前
6秒前
搜集达人应助rrrrrr采纳,获得10
8秒前
hchen完成签到,获得积分10
8秒前
8秒前
凶狠的大侠完成签到,获得积分10
8秒前
9秒前
9秒前
小粽子hmu完成签到,获得积分10
9秒前
10秒前
hecarli完成签到,获得积分0
10秒前
默默沛槐发布了新的文献求助10
11秒前
曼波关注了科研通微信公众号
11秒前
12秒前
1234完成签到,获得积分10
13秒前
风铃鸟应助夕夕不吃菜采纳,获得10
13秒前
14秒前
木子南发布了新的文献求助10
14秒前
科研通AI5应助冰山泥采纳,获得10
15秒前
16秒前
16秒前
yy完成签到,获得积分10
16秒前
SXW完成签到,获得积分10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4150746
求助须知:如何正确求助?哪些是违规求助? 3686832
关于积分的说明 11646965
捐赠科研通 3380002
什么是DOI,文献DOI怎么找? 1854871
邀请新用户注册赠送积分活动 916784
科研通“疑难数据库(出版商)”最低求助积分说明 830656