Recent advances in using Chinese Earth observation satellites for remote sensing of vegetation

遥感 植被(病理学) 地球观测 卫星 环境科学 计算机科学 地理 工程类 医学 病理 航空航天工程
作者
Zhengyang Zhang,Lei Lu,Yuhe Zhao,Yuanyuan Wang,Dandan Wei,Xiaodan Wu,Xuanlong Ma
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:195: 393-407 被引量:25
标识
DOI:10.1016/j.isprsjprs.2022.12.006
摘要

Vegetation is an important component of the Earth system as it supports other terrestrial biological activities through photosynthetic production. The biophysical and biochemical parameters of vegetation retrieved from satellite observations have been extensively used in global vegetation monitoring and Earth system modeling. So far, most of the remote sensing data used for vegetation-related applications are from sensors onboard American or European satellites. From the users' perspective, it would be beneficial to have well-calibrated science-quality Earth observation data from a diverse sources that can not only secure data continuity in case of sensor retirement or failure, but also enable multi-sensor research opportunities such as data fusion or multi-angle remote sensing. In this regard, it is worth exploring the usefulness of the Chinese Earth Observation Satellites (CEOSs) for remote sensing of vegetation. Here we reviewed the recent progress in using the CEOSs data for retrieving key vegetation parameters. We focused on the uncertainty and limitation in using the CEOSs by critically examining the available studies conducted on different vegetation types. We also made recommendations on research opportunities in combining CEOSs data with the existing data from other space agencies. The hope is to offer the community an up-to-date overview of what could be useful to their specific applications by leveraging the orbiting and the planned CEOSs sensors. In addition, critical evaluations from the community are expected to feed back and lead to improved CEOSs data in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
晴空万里发布了新的文献求助10
1秒前
ZD发布了新的文献求助10
3秒前
winnie发布了新的文献求助20
3秒前
4秒前
乔q完成签到 ,获得积分10
4秒前
斯文败类应助汤圆呢醒醒采纳,获得10
4秒前
orixero应助执念采纳,获得10
6秒前
6秒前
李健的小迷弟应助张明采纳,获得10
7秒前
7秒前
知意完成签到,获得积分10
8秒前
科研通AI6应助SWQ采纳,获得10
8秒前
8秒前
二十一发布了新的文献求助10
9秒前
诱导效应发布了新的文献求助10
10秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
乔q关注了科研通微信公众号
12秒前
LuoQin完成签到,获得积分10
14秒前
14秒前
xx完成签到 ,获得积分10
14秒前
15秒前
小wen发布了新的文献求助10
16秒前
刘霞发布了新的文献求助10
18秒前
susu发布了新的文献求助30
18秒前
MQueen完成签到,获得积分10
20秒前
zkr123发布了新的文献求助10
21秒前
ASDS完成签到,获得积分10
21秒前
终于花开日完成签到 ,获得积分10
22秒前
wxyshare应助王誉霖采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4914682
求助须知:如何正确求助?哪些是违规求助? 4188958
关于积分的说明 13009491
捐赠科研通 3957829
什么是DOI,文献DOI怎么找? 2169974
邀请新用户注册赠送积分活动 1188172
关于科研通互助平台的介绍 1095843