Region-Level SAR Image Segmentation Based on Edge Feature and Label Assistance

计算机科学 合成孔径雷达 人工智能 图像分割 分割 平滑的 特征(语言学) 计算机视觉 模式识别(心理学) 尺度空间分割 聚类分析 范围分割 边缘检测 像素 图像(数学) 图像处理 语言学 哲学
作者
Ronghua Shang,Mengmeng Liu,Licheng Jiao,Jie Feng,Yangyang Li,Rustam Stolkin
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:23
标识
DOI:10.1109/tgrs.2022.3217053
摘要

This paper proposes a novel segmentation algorithm for synthetic aperture radar (SAR) images. The algorithm performs region-level segmentation based on edge feature and label assistance (REFLA). It demonstrates improved performance in terms of segmentation accuracy while better preserving image edges. Firstly, an edge detection scheme is implemented, which fuses information from two advanced edge detection methods, thereby obtaining a more precise edge strength map (ESM). Secondly, a Canny algorithm is performed to divide the SAR image into edge regions and homogeneous regions, and different smoothing templates are selected according to pixel positions. Therefore, an anisotropic smoothing on the SAR image can be achieved, aiming at suppressing the noise within targets while also accurately maintaining the target boundaries. Thirdly, K-means clustering is applied on the smoothed result, to generate an initial set of labels. Using ESM and the initial labels as inputs, a watershed transformation and a majority voting strategy are employed to realize an initial segmentation at the region level. Finally, a label-aided region merging (LaRM) strategy is used to correctly segment the wrongly labeled regions, to give the final segmentation result. The LaRM, with merging rules based on label rather than gray characteristics, can avoid the need for calculating a large number of complex formulae, thus accelerating the region merging. Results are presented of experiments, on both simulated and real SAR images, in which the proposed REFLA method is compared against six state-of-the-art algorithms from the literature. REFLA achieves higher accuracy, while better retaining the image edges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助caixiaoz采纳,获得10
1秒前
乐乐应助吉吉国王饲养员采纳,获得30
2秒前
2秒前
2秒前
4秒前
4秒前
李爱国应助Asuna采纳,获得10
11秒前
14秒前
Ava应助风趣绮烟采纳,获得10
14秒前
16秒前
田园镇完成签到 ,获得积分10
19秒前
21秒前
22秒前
范1发布了新的文献求助10
24秒前
24秒前
27秒前
Asuna发布了新的文献求助10
28秒前
乐乐应助科研通管家采纳,获得10
29秒前
彭于晏应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得30
30秒前
30秒前
彭于晏应助科研通管家采纳,获得10
30秒前
科研菜j应助科研通管家采纳,获得20
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
30秒前
852应助科研通管家采纳,获得10
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
小新应助科研通管家采纳,获得10
30秒前
顾矜应助科研通管家采纳,获得10
30秒前
ding应助科研通管家采纳,获得10
30秒前
unqiue应助科研通管家采纳,获得10
30秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
上官若男应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566