Contrast-enhanced image synthesis using latent diffusion model for precise online tumor delineation in MRI-guided adaptive radiotherapy for brain metastases

流体衰减反转恢复 计算机科学 人工智能 对比度(视觉) 扩散成像 磁共振成像 图像质量 胶质母细胞瘤 核医学 模式识别(心理学) 磁共振弥散成像 计算机视觉 放射科 图像(数学) 医学 癌症研究
作者
Xiangyu Ma,Yuchao Ma,Yu Wang,Canjun Li,Yulin Liu,Xinyuan Chen,Jianrong Dai,Nan Bi,Kuo Men
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ade845
摘要

Abstract Objective:&#xD;Magnetic resonance imaging-guided adaptive radiotherapy (MRIgART) is a promising technique for long-course RT of large-volume brain metastasis (BM), due to the capacity to track tumor changes throughout treatment course. Contrast-enhanced T1-weighted (T1CE) MRI is essential for BM delineation, yet is often unavailable during online treatment concerning the requirement of contrast agent injection. This study aims to develop a synthetic T1CE (sT1CE) generation method to facilitate accurate online adaptive BM delineation.&#xD;Approach:&#xD;We developed a novel ControlNet-coupled latent diffusion model (CTN-LDM) combined with a personalized transfer learning strategy and a denoising diffusion implicit model (DDIM) inversion method to generate high quality sT1CE images from online T2-weighted (T2) or fluid attenuated inversion recovery (FLAIR) images. Visual quality of sT1CE images generated by the CTN-LDM was compared with classical deep learning models. BM delineation results using the combination of our sT1CE images and online T2/FLAIR images were compared with the results solely using online T2/FLAIR images, which is the current clinical method.&#xD;Main results:&#xD;Visual quality of sT1CE images from our CTN-LDM was superior to classical models both quantitatively and qualitatively. Leveraging sT1CE images, radiation oncologists achieved significant higher precision of adaptive BM delineation, with average Dice similarity coefficient of 0.93 ± 0.02 vs. 0.86 ± 0.04 (p < 0.01), compared with only using online T2/FLAIR images. &#xD;Significance:&#xD;The proposed method could generate high quality sT1CE images and significantly improve accuracy of online adaptive tumor delineation for long-course MRIgART of large-volume BM, potentially enhancing treatment outcomes and minimizing toxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迷人依白完成签到,获得积分10
刚刚
搞怪的又蓝完成签到,获得积分10
1秒前
1秒前
Zhang发布了新的文献求助10
2秒前
笨笨的从寒完成签到,获得积分10
3秒前
ggg完成签到,获得积分10
3秒前
蒋羊羊发布了新的文献求助10
4秒前
苹果尔柳完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
ewmmel发布了新的文献求助10
6秒前
辛勤的乌完成签到,获得积分10
6秒前
7秒前
9秒前
9秒前
12秒前
猪猪完成签到 ,获得积分10
13秒前
14秒前
ronin完成签到,获得积分10
14秒前
14秒前
芋圆发布了新的文献求助10
15秒前
烟喜发布了新的文献求助10
15秒前
隐形曼青应助Karina采纳,获得10
16秒前
tan完成签到,获得积分10
16秒前
yingwang完成签到,获得积分10
17秒前
优雅含莲发布了新的文献求助20
18秒前
18秒前
18秒前
20秒前
kk完成签到 ,获得积分10
21秒前
21秒前
yingwang发布了新的文献求助10
24秒前
申左一发布了新的文献求助10
24秒前
鳗鱼不尤发布了新的文献求助10
26秒前
烟喜完成签到,获得积分10
26秒前
27秒前
27秒前
宠儿完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4522598
求助须知:如何正确求助?哪些是违规求助? 3964142
关于积分的说明 12286797
捐赠科研通 3628016
什么是DOI,文献DOI怎么找? 1996554
邀请新用户注册赠送积分活动 1033088
科研通“疑难数据库(出版商)”最低求助积分说明 922844