Contrast-enhanced image synthesis using latent diffusion model for precise online tumor delineation in MRI-guided adaptive radiotherapy for brain metastases

流体衰减反转恢复 计算机科学 人工智能 对比度(视觉) 扩散成像 磁共振成像 图像质量 胶质母细胞瘤 核医学 模式识别(心理学) 磁共振弥散成像 计算机视觉 放射科 图像(数学) 医学 癌症研究
作者
Xiangyu Ma,Yuchao Ma,Yu Wang,Canjun Li,Yeqiang Liu,Xinyuan Chen,Jianrong Dai,Nan Bi,Kuo Men
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:70 (13): 135012-135012
标识
DOI:10.1088/1361-6560/ade845
摘要

Abstract Objective. Magnetic resonance imaging-guided adaptive radiotherapy (MRIgART) is a promising technique for long-course radiotherapy of large-volume brain metastasis (BM), due to the capacity to track tumor changes throughout treatment course. Contrast-enhanced T1-weighted (T1CE) MRI is essential for BM delineation, yet is often unavailable during online treatment concerning the requirement of contrast agent injection. This study aims to develop a synthetic T1CE (sT1CE) generation method to facilitate accurate online adaptive BM delineation. Approach. We developed a novel ControlNet-coupled latent diffusion model (CTN-LDM) combined with a personalized transfer learning strategy and a denoising diffusion implicit model inversion method to generate high quality sT1CE images from online T2-weighted (T2) or fluid attenuated inversion recovery (FLAIR) images. Visual quality of sT1CE images generated by the CTN-LDM was compared with other deep learning models. BM delineation results using the combination of our sT1CE images and online T2/FLAIR images were compared with the results solely using online T2/FLAIR images, which is the current clinical method. Main results. Visual quality of sT1CE images from our CTN-LDM was superior to competing models both quantitatively and qualitatively. Leveraging sT1CE images, radiation oncologists achieved significant higher precision of adaptive BM delineation, with average Dice similarity coefficient of 0.93 ± 0.02 vs. 0.86 ± 0.04 ( P < 0.01), compared with only using online T2/FLAIR images. Significance. The proposed method could generate high quality sT1CE images and significantly improve accuracy of online adaptive tumor delineation for long-course MRIgART of large-volume BM, potentially enhancing treatment outcomes and minimizing toxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助含蓄大雁采纳,获得10
刚刚
萧西完成签到 ,获得积分10
刚刚
麒ww完成签到 ,获得积分10
1秒前
藏羚羊完成签到,获得积分10
1秒前
TKTKW完成签到 ,获得积分10
1秒前
标致乐双完成签到 ,获得积分10
7秒前
曲奇吐司完成签到,获得积分10
7秒前
冯佳祥完成签到,获得积分10
8秒前
无奈的惜蕊完成签到,获得积分10
8秒前
居崽完成签到 ,获得积分10
9秒前
10秒前
Swait完成签到,获得积分10
10秒前
乐空思应助啦啦啦啦啦采纳,获得30
11秒前
沈格完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
jerry完成签到,获得积分10
12秒前
美好稚晴完成签到 ,获得积分10
14秒前
15秒前
叙温雨发布了新的文献求助10
16秒前
BareBear应助科研通管家采纳,获得10
16秒前
16秒前
17秒前
何跑跑应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
半农应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得30
17秒前
何跑跑应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
17秒前
Ava应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得30
17秒前
何跑跑应助科研通管家采纳,获得10
17秒前
wy应助科研通管家采纳,获得10
17秒前
BareBear应助科研通管家采纳,获得10
17秒前
何跑跑应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635633
求助须知:如何正确求助?哪些是违规求助? 4738446
关于积分的说明 14991286
捐赠科研通 4793567
什么是DOI,文献DOI怎么找? 2560588
邀请新用户注册赠送积分活动 1520523
关于科研通互助平台的介绍 1480824