Predicting Suicide or Self-Harm Crises Based on Decision Tree Analysis of Life Events and Coping Style: A Population-Based Study in China

危害 应对(心理学) 心理学 中国 人口 社会心理学 决策树 自杀预防 故意自残 毒物控制 临床心理学 医疗急救 人口学 医学 地理 社会学 计算机科学 考古 人工智能
作者
Shumeng Ma,Ping Li,Liwen REN,Ning Jia
出处
期刊:SAGE Open [SAGE Publishing]
卷期号:15 (2)
标识
DOI:10.1177/21582440251343970
摘要

Suicide and self-harm crises among high school students are significant public health issues. Previous research has often focused on individual factors in suicide and self-harm crises, neglecting the complex interactions between multiple factors. This study, based on the diathesis-stress model, utilized survey data of 12,472 Chinese high school students and employed machine learning methods to construct a decision tree model. It analyzed the most significant negative life events and coping styles in predicting suicide and self-harm crises, explored the impact of these factors on students, and examined sex differences. The classification tree’s built-in contribution function allowed us to obtain the importance of each variable. Results indicated that the model performed well, with the classification tree demonstrating strong predictive accuracy for self-harm and suicide crises among both male and female students. While the impact of negative life events and coping styles on suicide crises showed cross-sex consistency, sex differences were observed for self-harm crises. Among male students, only interpersonal relationships exceeded the 10% threshold in importance, whereas a wider range of events surpassed this threshold for female students. Coping styles played a critical role for both groups, further underscoring their importance in helping students mitigate crises amid negative events. The decision tree model demonstrated high accuracy in identifying students at risk of suicide and self-harm crises. Through the decision tree model, the study identified several key negative life events and coping styles, offering valuable insights for educators to provide more targeted attention and guidance in intervening in suicide and self-harm crises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
珍珠火龙果完成签到 ,获得积分10
刚刚
1秒前
康轲完成签到,获得积分10
1秒前
hansonh给hansonh的求助进行了留言
2秒前
finerain7完成签到,获得积分10
3秒前
Thorns完成签到,获得积分10
3秒前
蓝胖子完成签到 ,获得积分10
3秒前
英俊的铭应助读书的时候采纳,获得10
5秒前
5秒前
Beatrice完成签到,获得积分10
5秒前
非也非也6发布了新的文献求助10
5秒前
虚幻的雪巧完成签到,获得积分10
5秒前
ncwgx完成签到,获得积分10
6秒前
7秒前
9秒前
hh发布了新的文献求助30
10秒前
wanci应助张道恒采纳,获得10
10秒前
殷紫萍发布了新的文献求助10
11秒前
英俊的铭应助清水采纳,获得10
14秒前
胖达发布了新的文献求助10
14秒前
15秒前
Ry0_完成签到,获得积分10
16秒前
狗头发布了新的文献求助10
17秒前
18秒前
刘66完成签到,获得积分10
18秒前
我是老大应助胖达采纳,获得10
19秒前
mht应助nanxu采纳,获得10
19秒前
22秒前
24秒前
啊哈完成签到,获得积分10
26秒前
Zoo应助张老板采纳,获得20
27秒前
東南風完成签到,获得积分10
28秒前
彭于晏应助读书的时候采纳,获得10
28秒前
789关闭了789文献求助
29秒前
自觉南风完成签到,获得积分10
29秒前
柏林寒冬应助狗头采纳,获得10
30秒前
柏林寒冬应助狗头采纳,获得50
30秒前
ED应助狗头采纳,获得10
30秒前
ABC发布了新的文献求助10
30秒前
酷波er应助XUNAN采纳,获得10
30秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4082898
求助须知:如何正确求助?哪些是违规求助? 3622133
关于积分的说明 11491034
捐赠科研通 3337123
什么是DOI,文献DOI怎么找? 1834475
邀请新用户注册赠送积分活动 903328
科研通“疑难数据库(出版商)”最低求助积分说明 821581