In this paper, the impact of SiN passivation on dynamic-RON degradation of AlGaN/GaN HEMTs devices is put in evidence. To this end, samples showing different SiN passivation stoichiometry are considered, labeled as Sample A and Sample B. For dynamic-RON tests, two different experimental setups are employed to investigate the RON-drift showing up during conventional switch mode operation by driving the DUTs under both (i) resistive load and (ii) soft-switching trajectory. This allows to discern the impact of hot carriers and off-state drain voltage stress on the RON parameter drift. Measurements performed with both switching loci shows similar dynamic-RON response, indicating that hot carriers are not involved in the degradation of tested devices. Nevertheless, a significant difference was observed between Sample A and Sample B, with the former showing an additional RON-degradation mechanism, not present on the latter. This additional drift is totally ascribed to the SiN passivation layer and is confirmed by the different leakage current measured across the two SiN types. The mechanism is explained by the injection of negative charges from the Source Field-Plate towards the AlGaN surface that are captured by surface/dielectric states and partially depletes the 2DEG underneath.