已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Toward a general physics-informed neural network for amorphous shape memory polymer modelling

无定形固体 人工神经网络 聚合物 统计物理学 认知科学 计算机科学 材料科学 理论物理学 物理 纳米技术 工程物理 心理学 人工智能 化学 复合材料 有机化学
作者
Cheng Yan,Xiaming Feng,Patrick Mensah,Guoqiang Li
出处
期刊:Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences [Royal Society]
卷期号:481 (2318)
标识
DOI:10.1098/rspa.2024.0702
摘要

Due to the complex behaviour of amorphous shape memory polymers (SMPs), traditional constitutive models often struggle with material-specific limitations, challenging curve-fitting, history-dependent stress calculations and error accumulation from stepwise calculation for governing equations. In this study, we propose a physics-informed artificial neural network (PIANN) that integrates a conventional neural network with a strain-based phase transition framework to predict the constitutive behaviour of amorphous SMPs. The model is validated using five temperature–stress datasets and four temperature–strain datasets, including experimental data from four types of SMPs and simulation results from a widely accepted model. PIANN predicts four key shape memory behaviours: stress evolution during hot programming, stress recovery following both cold and hot programming and free strain recovery during heating branch. Notably, it predicts recovery strain during heating without using any heating data for training. Comparisons with experimental data show excellent agreement in both programming (cooling) and recovery (heating) branches. Remarkably, the model achieves this performance with as few as two temperature–stress curves in the training set. Overall, PIANN addresses common challenges in SMP modelling by eliminating history dependence, improving curve-fitting accuracy and significantly enhancing computational efficiency. This work represents a substantial step forward in developing generalizable models for SMPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
HHHSean完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
星空完成签到 ,获得积分10
7秒前
10秒前
伟川周发布了新的文献求助10
11秒前
DrChan发布了新的文献求助10
11秒前
菁菁发布了新的文献求助10
12秒前
12秒前
yuandashazi发布了新的文献求助10
13秒前
LYQ完成签到 ,获得积分10
15秒前
123发布了新的文献求助10
17秒前
gloooow完成签到 ,获得积分10
20秒前
20秒前
Uncanny完成签到,获得积分10
20秒前
CipherSage应助神内小大夫采纳,获得30
21秒前
Lucas应助DrChan采纳,获得10
23秒前
Zong完成签到,获得积分10
23秒前
123完成签到,获得积分10
23秒前
24秒前
26秒前
29秒前
30秒前
30秒前
30秒前
30秒前
jiw发布了新的文献求助10
30秒前
30秒前
30秒前
30秒前
30秒前
31秒前
31秒前
31秒前
Jenny发布了新的文献求助10
32秒前
野子发布了新的文献求助10
34秒前
Candy2024完成签到 ,获得积分10
35秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4098320
求助须知:如何正确求助?哪些是违规求助? 3636063
关于积分的说明 11524745
捐赠科研通 3346151
什么是DOI,文献DOI怎么找? 1839036
邀请新用户注册赠送积分活动 906477
科研通“疑难数据库(出版商)”最低求助积分说明 823715