亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Ten-Year Clinical Outcomes in Multiple Sclerosis with Radiomics-Based Machine Learning Models

医学 无线电技术 多发性硬化 梅德林 医学物理学 临床神经学 机器学习 人工智能 放射科 神经科学 免疫学 生物 政治学 计算机科学 法学
作者
Mario Tranfa,Maria Petracca,Renato Cuocolo,Lorenzo Ugga,Vincenzo Brescia Morra,Antonio Carotenuto,Andrea Elefante,Fabrizia Falco,Roberta Lanzillo,Marcello Moccia,Alessandra Scaravilli,Arturo Brunetti,Sirio Cocozza,Mario Quarantelli,Giuseppe Pontillo
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:: ajnr.A8912-ajnr.A8912
标识
DOI:10.3174/ajnr.a8912
摘要

Identifying patients with multiple sclerosis (pwMS) at higher risk of clinical progression is essential to inform clinical management. We aimed to build prognostic models using machine learning (ML) algorithms predicting long-term clinical outcomes based on a systematic mapping of volumetric, radiomic, and macrostructural disconnection features from routine brain MRI scans of pwMS. In this longitudinal monocentric study, 3T structural MRI scans of pwMS were retrospectively analyzed. Based on a ten-year clinical follow-up (average duration=9.4±1.1 years), patients were classified according to confirmed disability progression (CDP) and cognitive impairment (CI) as assessed through the Expanded Disability Status Scale (EDSS) and the Brief International Cognitive Assessment of Multiple Sclerosis (BICAMS) battery, respectively. 3D-T1w and FLAIR images were automatically segmented to obtain volumes, disconnection scores (estimated based on lesion masks and normative tractography data), and radiomic features from 116 gray matter regions defined according to the Automated Anatomical Labelling (AAL) atlas. Three ML algorithms (Extra Trees, Logistic Regression, and Support Vector Machine) were used to build models predicting long-term CDP and CI based on MRI-derived features. Feature selection was performed on the training set with a multi-step process, and models were validated with a holdout approach, randomly splitting the patients into training (75%) and test (25%) sets. We studied 177 pwMS (M/F = 51/126; mean±SD age: 35.2±8.7 years). Long-term CDP and CI were observed in 71 and 55 patients, respectively. Regarding the CDP class prediction analysis, the feature selection identified 13-, 12-, and 10-feature subsets obtaining an accuracy on the test set of 0.71, 0.69, and 0.67 for the Extra Trees, Logistic Regression, and Support Vector Machine classifiers, respectively. Similarly, for the CI prediction, subsets of 16, 17, and 19 features were selected, with 0.69, 0.64, and 0.62 accuracy values on the test set, respectively. There were no significant differences in accuracy between ML models for CDP (p=0.65) or CI (p=0.31). Building on quantitative features derived from conventional MRI scans, we obtained long-term prognostic models, potentially informing patients' stratification and clinical decision-making. MS, multiple sclerosis; pwMS, people with MS; HC, healthy controls; ML, machine learning; DD, disease duration; EDSS, Expanded Disability Status Scale; TLV, total lesion volume; CDP, confirmed disability progression; CI, cognitive impairment; BICAMS, Brief International Cognitive Assessment of Multiple Sclerosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白华苍松发布了新的文献求助20
14秒前
大模型应助eternity采纳,获得10
18秒前
42秒前
51秒前
1分钟前
nt7401完成签到,获得积分10
1分钟前
1分钟前
方沅完成签到,获得积分10
1分钟前
leaolf应助白华苍松采纳,获得10
1分钟前
eternity关注了科研通微信公众号
1分钟前
1分钟前
2分钟前
eternity发布了新的文献求助10
2分钟前
123关注了科研通微信公众号
2分钟前
2分钟前
Marciu33发布了新的文献求助30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
乐乐应助ygl0217采纳,获得10
3分钟前
3分钟前
ygl0217发布了新的文献求助10
3分钟前
3分钟前
李健应助ceeray23采纳,获得20
4分钟前
4分钟前
4分钟前
所所应助ygl0217采纳,获得10
4分钟前
4分钟前
4分钟前
ygl0217发布了新的文献求助10
4分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
隐形曼青应助ygl0217采纳,获得10
4分钟前
5分钟前
灵波应助科研通管家采纳,获得10
5分钟前
星辰大海应助科研通管家采纳,获得30
5分钟前
馆长举报奶酪包求助涉嫌违规
5分钟前
平常以云完成签到 ,获得积分10
5分钟前
Sylvia关注了科研通微信公众号
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4834409
求助须知:如何正确求助?哪些是违规求助? 4138281
关于积分的说明 12808243
捐赠科研通 3882014
什么是DOI,文献DOI怎么找? 2134977
邀请新用户注册赠送积分活动 1155023
关于科研通互助平台的介绍 1054202