Enhancing Counter Drone Operations Through Human-AI Collaboration: A Hierarchical Decision-Making Framework

无人机 计算机科学 人工智能 机器学习 目标检测 雷达 深度学习 模式识别(心理学) 电信 遗传学 生物
作者
Varun Mehta,Kesav Kaza,Fardad Dadboud,Miodrag Bolić,Iraj Mantegh
标识
DOI:10.1109/dasc58513.2023.10311244
摘要

In recent years, drones have become popular for various applications, including surveillance and delivery. Detecting and classifying drones is crucial for security and regulatory purposes, as well as for improving the efficiency of drone operations. In this work, we propose a human-AI collaboration framework for drone detection, tracking, and classification using multiple sensors, such as ground radar and ground pan-tilt-zoom (PTZ) camera. Our approach combines traditional signal processing and machine learning to classify drones using radar tracks, and a deep learning-based model for detecting and classifying drones from video data. However, due to the limitations of supervised learning, there are always scenarios where these models fail, such as unseen/untrained backgrounds, new aircraft types or signatures. To address this issue, we developed a human-like model and proposed a methodology that involves object detection and a referral policy to trigger a simulated human review of the event.We demonstrate the effectiveness of our human-AI collaboration framework through extensive simulations utilizing data collected from ground radar, and comparing it with standalone AI systems. We also evaluate the effectiveness of various referral policies for different human decision models. In conclusion, the proposed human-AI collaboration framework for drone detection, tracking, and classification has the potential to improve the efficiency and accuracy of drone operations, while ensuring regulatory compliance and enhancing security. Multiple sensors and a referral policy is applied in the proposed framework to trigger human review of events. This is an important step towards addressing the limitations of supervised learning in scenarios where traditional models fail, and towards achieving the full potential of drones in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心的日记本完成签到,获得积分10
1秒前
1秒前
yiy37发布了新的文献求助100
1秒前
aigj发布了新的文献求助10
2秒前
机智的山晴完成签到,获得积分10
2秒前
4秒前
ding应助lijingyi采纳,获得10
5秒前
AoAoo完成签到,获得积分10
6秒前
7秒前
机灵的健柏完成签到,获得积分10
7秒前
虚拟的傥完成签到,获得积分20
7秒前
8秒前
Adesanya完成签到,获得积分20
8秒前
所所应助忐忑的雪糕采纳,获得10
9秒前
prina完成签到 ,获得积分10
9秒前
ranjeah完成签到 ,获得积分10
10秒前
大个应助不嘻嘻采纳,获得10
10秒前
虚拟的傥发布了新的文献求助10
10秒前
豆瓣酱完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
白桃战士完成签到,获得积分10
12秒前
rita_sun1969完成签到,获得积分10
13秒前
上官若男应助rrrrrwwwww采纳,获得10
13秒前
fjmelite完成签到 ,获得积分10
15秒前
义气白枫发布了新的文献求助10
16秒前
qingmao完成签到,获得积分10
16秒前
YOLO发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
我是老大应助姜姜研采纳,获得10
19秒前
一一完成签到,获得积分10
20秒前
cheng发布了新的文献求助10
21秒前
112发布了新的文献求助10
24秒前
25秒前
26秒前
清欢渡完成签到,获得积分10
27秒前
Antares完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4450160
求助须知:如何正确求助?哪些是违规求助? 3918272
关于积分的说明 12161675
捐赠科研通 3568055
什么是DOI,文献DOI怎么找? 1959324
邀请新用户注册赠送积分活动 998745
科研通“疑难数据库(出版商)”最低求助积分说明 893846