过电位
等温过程
统计物理学
电解质
领域(数学)
自由度(物理和化学)
工作(物理)
电化学
相(物质)
代表(政治)
网格
热力学
材料科学
计算机科学
电极
物理
化学
物理化学
数学
量子力学
政治
政治学
法学
纯数学
几何学
作者
Jin Zhang,Alexander F. Chadwick,Peter W. Voorhees
出处
期刊:Cornell University - arXiv
日期:2023-11-06
标识
DOI:10.1149/1945-7111/ad0ff6
摘要
Modeling microstructure evolution in electrochemical systems is vital for understanding the mechanism of various electrochemical processes. In this work, we propose a general phase field framework that is fully variational and thus guarantees that the energy decreases upon evolution in an isothermal system. The bulk and interface free energies are decoupled using a grand potential formulation to enhance numerical efficiency. The variational definition of the overpotential is used, and the reaction kinetics is incorporated into the evolution equation for the phase field to correctly capture capillary effects and eliminate additional model parameter calibrations. A higher-order kinetic correction is derived to accurately reproduce general reaction models such as the Butler-Volmer, Marcus, and Marcus-Hush-Chidsey models. Electrostatic potentials in the electrode and the electrolyte are considered separately as independent variables, providing additional freedom to capture the interfacial potential jump. To handle realistic materials and processing parameters for practical applications, a driving force extension method is used to enhance the grid size by three orders of magnitude. Finally, we comprehensively verify our phase field model using classical electrochemical theory.
科研通智能强力驱动
Strongly Powered by AbleSci AI