已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real-time arrival picking of rock microfracture signals based on convolutional-recurrent neural network and its engineering application

计算机科学 超参数 卷积神经网络 一致性(知识库) 算法 人工智能
作者
Bingrui Chen,Xu Wang,Xinhao Zhu,Qing Wang,Houlin Xie
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier]
卷期号:16 (3): 761-777 被引量:14
标识
DOI:10.1016/j.jrmge.2023.07.003
摘要

Accurately picking P- and S-wave arrivals of microseismic (MS) signals in real-time directly influences the early warning of rock mass failure. A common contradiction between accuracy and computation exists in the current arrival picking methods. Thus, a real-time arrival picking method of MS signals is constructed based on a convolutional-recurrent neural network (CRNN). This method fully utilizes the advantages of convolutional layers and gated recurrent units (GRU) in extracting short- and long-term features, in order to create a precise and lightweight arrival picking structure. Then, the synthetic signals with field noises are used to evaluate the hyperparameters of the CRNN model and obtain an optimal CRNN model. The actual operation on various devices indicates that compared with the U-Net method, the CRNN method achieves faster arrival picking with less performance consumption. An application of large underground caverns in the Yebatan hydropower station (YBT) project shows that compared with the short-term average/long-term average (STA/LTA), Akaike information criterion (AIC) and U-Net methods, the CRNN method has the highest accuracy within four sampling points, which is 87.44% for P-wave and 91.29% for S-wave, respectively. The sum of mean absolute errors (MAESUM) of the CRNN method is 4.22 sampling points, which is lower than that of the other methods. Among the four methods, the MS sources location calculated based on the CRNN method shows the best consistency with the actual failure, which occurs at the junction of the shaft and the second gallery. Thus, the proposed method can pick up P- and S-arrival accurately and rapidly, providing a reference for rock failure analysis and evaluation in engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
三岁完成签到,获得积分10
10秒前
277完成签到 ,获得积分10
13秒前
笑点低忆之完成签到 ,获得积分10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得20
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
林狗完成签到,获得积分10
17秒前
JamesPei应助maomao201026采纳,获得10
17秒前
18秒前
别整太拗口的完成签到,获得积分10
18秒前
文武贝完成签到,获得积分10
19秒前
慕玖淇完成签到 ,获得积分10
20秒前
科研通AI6应助潦草小狗采纳,获得10
20秒前
愉快的犀牛完成签到 ,获得积分10
29秒前
Tendency完成签到 ,获得积分10
30秒前
阿九完成签到,获得积分10
30秒前
丰富之槐完成签到,获得积分10
32秒前
32秒前
生动画笔完成签到,获得积分10
36秒前
想游泳的鹰完成签到,获得积分10
37秒前
宋向荣完成签到 ,获得积分10
39秒前
39秒前
40秒前
莫春莹完成签到 ,获得积分10
42秒前
徐zhipei完成签到 ,获得积分10
46秒前
DDD发布了新的文献求助30
46秒前
Hello应助hcbd采纳,获得10
49秒前
50秒前
小尾巴发布了新的文献求助10
54秒前
郭郭完成签到 ,获得积分10
56秒前
Ronan完成签到 ,获得积分10
57秒前
小尾巴完成签到,获得积分10
1分钟前
打打应助小尾巴采纳,获得10
1分钟前
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443775
求助须知:如何正确求助?哪些是违规求助? 4553531
关于积分的说明 14242338
捐赠科研通 4475236
什么是DOI,文献DOI怎么找? 2452316
邀请新用户注册赠送积分活动 1443219
关于科研通互助平台的介绍 1418907