Efficiency in Orchid Species Classification: A Transfer Learning-Based Approach

计算机科学 过度拟合 学习迁移 领域(数学) 人工智能 面子(社会学概念) 功能(生物学) 模式识别(心理学) 机器学习 图像(数学) 人工神经网络 生物 数学 社会科学 进化生物学 社会学 纯数学
作者
Jianhua Wang,Haozhan Wang
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
卷期号:23 (01)
标识
DOI:10.1142/s1469026823500311
摘要

Orchid is a type of plant that grows on land. It is highly valued for its beauty and is cherished by many because of its graceful flower shape, delicate fragrance, vibrant colors, and noble symbolism. Although there are various types of orchids, some of them look similar in appearance and color, making it challenging for people to distinguish them quickly and accurately. The existing methods for classifying orchid species face issues with accuracy due to the similarities between different species and the differences within the same species. This affects their practical use. To address these challenges, this paper introduces an efficient method for classifying orchid species using transfer learning. The main achievement of this study is the successful utilization of transfer learning to achieve accurate orchid species classification. This approach reduces the need for large datasets, minimizes overfitting, cuts down on training time and costs, and enhances classification accuracy. Specifically, the proposed approach involves four phases. First, we gathered a collection of 12 orchid image sets, totaling 12,227 images, through a combination of network sources and field photography. Next, we analyzed the distinctive features present in the collected orchid image sets. We identified certain connections between the acquired orchid datasets and other datasets. Finally, we employed transfer learning technology to create an efficient classification function for orchid species based on these relationships. As a result, our proposed method effectively addresses the challenges highlighted. Experimental results demonstrate that our classification algorithm, which utilizes transfer learning, achieves a classification accuracy rate of 96.16% compared to not using the transfer learning method. This substantial improvement in accuracy greatly enhances the efficiency of orchid classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangjianan完成签到,获得积分20
刚刚
浅浅殇完成签到,获得积分10
3秒前
zhangjianan发布了新的文献求助10
3秒前
DXM完成签到 ,获得积分10
4秒前
李木头完成签到,获得积分10
8秒前
10秒前
不想长大完成签到 ,获得积分10
11秒前
陈醋塔塔完成签到,获得积分10
12秒前
lili完成签到 ,获得积分10
14秒前
clock完成签到 ,获得积分10
20秒前
gmc完成签到 ,获得积分10
22秒前
一一一多完成签到 ,获得积分10
30秒前
戚雅柔完成签到 ,获得积分10
31秒前
32秒前
ITALO发布了新的文献求助10
36秒前
future完成签到 ,获得积分10
37秒前
cdercder应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
cdercder应助科研通管家采纳,获得10
40秒前
kanong完成签到,获得积分0
40秒前
余味应助科研通管家采纳,获得10
40秒前
甜甜友容完成签到,获得积分10
42秒前
天将明完成签到 ,获得积分10
43秒前
Lucas应助科研1采纳,获得10
44秒前
46秒前
千玺的小粉丝儿完成签到,获得积分10
56秒前
Lzoctor完成签到 ,获得积分10
1分钟前
AmyHu完成签到,获得积分10
1分钟前
俊逸吐司完成签到 ,获得积分10
1分钟前
Betty123456完成签到,获得积分10
1分钟前
1分钟前
100完成签到,获得积分10
1分钟前
Lamis完成签到 ,获得积分10
1分钟前
1分钟前
十二完成签到 ,获得积分10
1分钟前
科研1发布了新的文献求助10
1分钟前
1分钟前
LYZSh完成签到,获得积分10
1分钟前
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776037
求助须知:如何正确求助?哪些是违规求助? 3321552
关于积分的说明 10206296
捐赠科研通 3036621
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797424
科研通“疑难数据库(出版商)”最低求助积分说明 757829