Crop Mapping Based on Sentinel-2 Images Using Semantic Segmentation Model of Attention Mechanism

学习迁移 人工智能 分割 深度学习 计算机科学 分类 适应性 遥感 模式识别(心理学) 精准农业 机器学习 农业 地理 生态学 生物 考古
作者
Meixiang Gao,Tingyu Lu,Lei Wang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (15): 7008-7008 被引量:2
标识
DOI:10.3390/s23157008
摘要

Using remote sensing images to identify crop plots and estimate crop planting area is an important part of agricultural remote sensing monitoring. High-resolution remote sensing images can provide rich information regarding texture, tone, shape, and spectrum of ground objects. With the advancement of sensor and information technologies, it is now possible to categorize crops with pinpoint accuracy. This study defines crop mapping as a semantic segmentation problem; therefore, a deep learning method is proposed to identify the distribution of corn and soybean using the differences in the spatial and spectral features of crops. The study area is located in the southwest of the Great Lakes in the United States, where corn and soybean cultivation is concentrated. The proposed attention mechanism deep learning model, A2SegNet, was trained and evaluated using three years of Sentinel-2 data, collected between 2019 and 2021. The experimental results show that this method is able to fully extract the spatial and spectral characteristics of crops, and its classification effect is significantly better than that of the baseline method, and it has better classification performance than other deep learning models. We cross verified the trained model on the test sets of different years through transfer learning in both spatiotemporal and spatial dimensions. Proving the effectiveness of the attention mechanism in the process of knowledge transfer, A2SegNet showed better adaptability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zila完成签到,获得积分10
刚刚
华仔应助王圆采纳,获得10
刚刚
刚刚
刚刚
yuan应助yam001采纳,获得10
1秒前
一杯晨汁发布了新的文献求助10
1秒前
1秒前
1秒前
Sun发布了新的文献求助10
2秒前
幸幸发布了新的文献求助10
2秒前
科研通AI2S应助jack1采纳,获得10
3秒前
MartinaLZ发布了新的文献求助30
4秒前
搜集达人应助zila采纳,获得10
4秒前
4秒前
Bink发布了新的文献求助10
4秒前
花开富贵完成签到,获得积分10
4秒前
大魁完成签到,获得积分10
5秒前
oken关注了科研通微信公众号
5秒前
阿丕啊呸完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
7秒前
南初完成签到,获得积分10
7秒前
7秒前
丘比特应助畅快行云采纳,获得10
8秒前
共享精神应助ju00采纳,获得10
8秒前
8秒前
天天快乐应助认真子默采纳,获得10
8秒前
一期一会完成签到,获得积分10
8秒前
cc完成签到,获得积分10
8秒前
ww发布了新的文献求助30
8秒前
DaDA完成签到 ,获得积分10
9秒前
9秒前
李爱国应助kuku科研仔采纳,获得10
10秒前
zhouleiwang发布了新的文献求助10
10秒前
10秒前
SciGPT应助Sun采纳,获得10
10秒前
充电宝应助gehao采纳,获得10
11秒前
852应助IVY采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790180
求助须知:如何正确求助?哪些是违规求助? 3334867
关于积分的说明 10272529
捐赠科研通 3051310
什么是DOI,文献DOI怎么找? 1674583
邀请新用户注册赠送积分活动 802677
科研通“疑难数据库(出版商)”最低求助积分说明 760831