Exploring the Potential of Artificial Intelligence in Breast Ultrasound

工作流程 乳房成像 乳腺超声检查 可解释性 人工智能 临床实习 乳腺摄影术 医学物理学 医学 人工智能应用 计算机科学 机器学习 乳腺癌 家庭医学 内科学 癌症 数据库
作者
Giovanni Irmici,Maurizio Cè,Gianmarco Della Pepa,Elisa D’Ascoli,Claudia De Berardinis,Emilia Giambersio,Lidia Rabiolo,Ludovica La Rocca,Serena Carriero,Catherine Depretto,Gianfranco Scaperrotta,Michaela Cellina
出处
期刊:Critical Reviews in Oncogenesis [Begell House]
卷期号:29 (2): 15-28 被引量:2
标识
DOI:10.1615/critrevoncog.2023048873
摘要

Breast ultrasound has emerged as a valuable imaging modality in the detection and characterization of breast lesions, particularly in women with dense breast tissue or contraindications for mammography. Within this framework, artificial intelligence (AI) has garnered significant attention for its potential to improve diagnostic accuracy in breast ultrasound and revolutionize the workflow. This review article aims to comprehensively explore the current state of research and development in harnessing AI's capabilities for breast ultrasound. We delve into various AI techniques, including machine learning, deep learning, as well as their applications in automating lesion detection, segmentation, and classification tasks. Furthermore, the review addresses the challenges and hurdles faced in implementing AI systems in breast ultrasound diagnostics, such as data privacy, interpretability, and regulatory approval. Ethical considerations pertaining to the integration of AI into clinical practice are also discussed, emphasizing the importance of maintaining a patient-centered approach. The integration of AI into breast ultrasound holds great promise for improving diagnostic accuracy, enhancing efficiency, and ultimately advancing patient's care. By examining the current state of research and identifying future opportunities, this review aims to contribute to the understanding and utilization of AI in breast ultrasound and encourage further interdisciplinary collaboration to maximize its potential in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KeLiang完成签到,获得积分10
刚刚
刚刚
糊涂的剑发布了新的文献求助10
刚刚
充电宝应助小巧的师采纳,获得10
1秒前
懦弱的难敌完成签到,获得积分10
1秒前
榴莲奶黄包完成签到,获得积分10
1秒前
2秒前
2秒前
起风了完成签到,获得积分10
2秒前
szh发布了新的文献求助10
3秒前
4秒前
aweiei发布了新的文献求助30
4秒前
4秒前
ChrisKim完成签到,获得积分10
4秒前
盖了帽了发布了新的文献求助10
4秒前
无奈凡波完成签到 ,获得积分10
4秒前
友好阁应助楼下太吵了采纳,获得10
5秒前
selva完成签到,获得积分10
5秒前
lx发布了新的文献求助10
7秒前
紫伊完成签到,获得积分10
7秒前
7秒前
555完成签到,获得积分10
8秒前
上岸上岸2发布了新的文献求助10
8秒前
受伤幻桃发布了新的文献求助10
8秒前
milagu完成签到,获得积分10
8秒前
wanci应助糊涂的剑采纳,获得10
9秒前
cao完成签到,获得积分10
9秒前
save完成签到,获得积分10
9秒前
烟景完成签到 ,获得积分10
10秒前
10秒前
陈住气完成签到,获得积分10
10秒前
思源应助awen采纳,获得10
10秒前
10秒前
along完成签到,获得积分10
12秒前
小巧的师发布了新的文献求助10
12秒前
wanci应助Oscillator采纳,获得10
13秒前
13秒前
从容襄完成签到,获得积分10
13秒前
13秒前
恶魔猫猫买面膜完成签到,获得积分10
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092744
求助须知:如何正确求助?哪些是违规求助? 3631446
关于积分的说明 11509895
捐赠科研通 3342397
什么是DOI,文献DOI怎么找? 1837108
邀请新用户注册赠送积分活动 904934
科研通“疑难数据库(出版商)”最低求助积分说明 822708