已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Clinical‐functional brain connectivity signature predicts longitudinal symptom improvement after acupuncture treatment in patients with functional dyspepsia

针灸科 医学 神经影像学 物理医学与康复 病理 精神科 替代医学
作者
Tao Yin,Yuzhu Qu,Yangke Mao,Pan Zhang,Peihong Ma,Zhaoxuan He,Ruirui Sun,Lu Jin,Yuan Chen,Shuai Yin,Qiyong Gong,Yong Tang,Fanrong Liang,Fang Zeng
出处
期刊:Human Brain Mapping [Wiley]
卷期号:44 (16): 5416-5428 被引量:7
标识
DOI:10.1002/hbm.26449
摘要

Abstract Whilst acupuncture has been shown to be an effective treatment for functional dyspepsia (FD), its efficacy varies significantly among patients. Knowing beforehand how each patient responds to acupuncture treatment will facilitate the ability to produce personalized prescriptions, therefore, improving acupuncture efficacy. The objective of this study was to construct the prediction model, based on the clinical‐neuroimaging signature, to forecast the individual symptom improvement of FD patients following a 4‐week acupuncture treatment and to identify the critical predictive features that could potentially serve as biomarkers for predicting the efficacy of acupuncture for FD. Clinical‐functional brain connectivity signatures were extracted from samples in the training‐test set (100 FD patients) and independent validation set (60 FD patients). Based on these signatures and support vector machine algorithms, prediction models were developed in the training test set, followed by model performance evaluation and predictive features extraction. Subsequently, the external robustness of the extracted predictive features in predicting acupuncture efficacy was evaluated by the independent validation set. The developed prediction models possessed an accuracy of 88% in predicting acupuncture responders, as well as an R 2 of 0.453 in forecasting symptom relief. Factors that contributed significantly to stronger responsiveness of patients to acupuncture therapy included higher resting‐state functional connectivity associated with the orbitofrontal gyrus, caudate, hippocampus, and anterior insula, as well as higher baseline scores of the Symptom Index of Dyspepsia and shorter durations of the condition. Furthermore, the robustness of these features in predicting the efficacy of acupuncture for FD was verified through various machine learning algorithms and independent samples and remained stable in univariate and multivariate analyses. These findings suggest that it is both feasible and reliable to predict the efficacy of acupuncture for FD based on the pre‐treatment clinical‐neuroimaging signature. The established prediction framework will promote the identification of suitable candidates for acupuncture treatment, thereby improving the efficacy and reducing the cost of acupuncture for FD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
u9227完成签到 ,获得积分10
2秒前
2秒前
深情安青应助Lina采纳,获得10
4秒前
1112131345完成签到,获得积分20
6秒前
共享精神应助seun采纳,获得10
8秒前
8秒前
海棠完成签到 ,获得积分10
9秒前
Wang_miao完成签到 ,获得积分10
11秒前
12秒前
wwwxxx123发布了新的文献求助10
12秒前
yzizz完成签到 ,获得积分10
12秒前
litt发布了新的文献求助10
16秒前
烟花应助sy采纳,获得10
16秒前
传奇3应助sy采纳,获得10
16秒前
爆米花应助sy采纳,获得10
17秒前
Lucas应助sy采纳,获得10
17秒前
17秒前
星辰大海应助sy采纳,获得10
17秒前
情怀应助sy采纳,获得10
17秒前
orixero应助sy采纳,获得10
17秒前
李爱国应助sy采纳,获得10
17秒前
大大完成签到 ,获得积分10
18秒前
vkey完成签到,获得积分10
19秒前
20秒前
栀鸢发布了新的文献求助10
21秒前
依晨发布了新的文献求助10
23秒前
善学以致用应助www采纳,获得10
24秒前
科研路上互帮互助,共同进步完成签到 ,获得积分10
24秒前
科研通AI2S应助小医采纳,获得10
26秒前
牛牛完成签到 ,获得积分10
28秒前
28秒前
30秒前
32秒前
33秒前
从容果汁完成签到 ,获得积分10
34秒前
你没事吧完成签到 ,获得积分10
35秒前
Hello应助可靠的寒风采纳,获得10
35秒前
www发布了新的文献求助10
36秒前
莫力布林完成签到 ,获得积分10
37秒前
xixixi发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681075
求助须知:如何正确求助?哪些是违规求助? 5003997
关于积分的说明 15174789
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594411
邀请新用户注册赠送积分活动 1547531
关于科研通互助平台的介绍 1505468