亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical Decision Support System for All Stages of Gastric Carcinogenesis in Real-Time Endoscopy: Model Establishment and Validation Study

医学 萎缩 发育不良 内窥镜检查 病变 分割 癌症 放射科 人工智能 内科学 病理 计算机科学
作者
Eun Jeong Gong,Chang Seok Bang,Jae Jun Lee,Hae Min Jeong,Gwang Ho Baik,Jae Hoon Jeong,Dick Sigmund,Gi Hun Lee
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e50448-e50448 被引量:7
标识
DOI:10.2196/50448
摘要

Background Our research group previously established a deep-learning–based clinical decision support system (CDSS) for real-time endoscopy-based detection and classification of gastric neoplasms. However, preneoplastic conditions, such as atrophy and intestinal metaplasia (IM) were not taken into account, and there is no established model that classifies all stages of gastric carcinogenesis. Objective This study aims to build and validate a CDSS for real-time endoscopy for all stages of gastric carcinogenesis, including atrophy and IM. Methods A total of 11,868 endoscopic images were used for training and internal testing. The primary outcomes were lesion classification accuracy (6 classes: advanced gastric cancer, early gastric cancer, dysplasia, atrophy, IM, and normal) and atrophy and IM lesion segmentation rates for the segmentation model. The following tests were carried out to validate the performance of lesion classification accuracy: (1) external testing using 1282 images from another institution and (2) evaluation of the classification accuracy of atrophy and IM in real-world procedures in a prospective manner. To estimate the clinical utility, 2 experienced endoscopists were invited to perform a blind test with the same data set. A CDSS was constructed by combining the established 6-class lesion classification model and the preneoplastic lesion segmentation model with the previously established lesion detection model. Results The overall lesion classification accuracy (95% CI) was 90.3% (89%-91.6%) in the internal test. For the performance validation, the CDSS achieved 85.3% (83.4%-97.2%) overall accuracy. The per-class external test accuracies for atrophy and IM were 95.3% (92.6%-98%) and 89.3% (85.4%-93.2%), respectively. CDSS-assisted endoscopy showed an accuracy of 92.1% (88.8%-95.4%) for atrophy and 95.5% (92%-99%) for IM in the real-world application of 522 consecutive screening endoscopies. There was no significant difference in the overall accuracy between the invited endoscopists and established CDSS in the prospective real-clinic evaluation (P=.23). The CDSS demonstrated a segmentation rate of 93.4% (95% CI 92.4%-94.4%) for atrophy or IM lesion segmentation in the internal testing. Conclusions The CDSS achieved high performance in terms of computer-aided diagnosis of all stages of gastric carcinogenesis and demonstrated real-world application potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
3秒前
秋秋完成签到 ,获得积分10
4秒前
gecko19gecko完成签到 ,获得积分10
8秒前
lovelife完成签到,获得积分10
34秒前
NexusExplorer应助多边棱采纳,获得10
44秒前
58秒前
量子星尘发布了新的文献求助10
1分钟前
科研通AI5应助落落洛栖采纳,获得10
1分钟前
hwen1998完成签到 ,获得积分10
1分钟前
VDC完成签到,获得积分0
2分钟前
2分钟前
小安同学完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Rebeccaiscute完成签到 ,获得积分10
3分钟前
4分钟前
JASON应助VDC采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
许不让发布了新的文献求助10
5分钟前
kbcbwb2002完成签到,获得积分10
5分钟前
6分钟前
多边棱发布了新的文献求助10
6分钟前
范森林完成签到 ,获得积分10
6分钟前
6分钟前
CipherSage应助多边棱采纳,获得10
6分钟前
量子星尘发布了新的文献求助50
6分钟前
7分钟前
多边棱发布了新的文献求助10
7分钟前
8分钟前
共享精神应助多边棱采纳,获得10
8分钟前
8分钟前
9分钟前
9分钟前
多边棱发布了新的文献求助10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
鲤鱼听荷完成签到 ,获得积分10
10分钟前
幽默钢笔发布了新的文献求助10
10分钟前
科研通AI5应助落落洛栖采纳,获得10
10分钟前
打打应助多边棱采纳,获得10
10分钟前
胡萝卜完成签到,获得积分10
11分钟前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Research Design: Qualitative, Quantitative, and Mixed Methods Approaches Sixth Edition 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4640566
求助须知:如何正确求助?哪些是违规求助? 4033390
关于积分的说明 12476745
捐赠科研通 3721027
什么是DOI,文献DOI怎么找? 2053755
邀请新用户注册赠送积分活动 1084879
科研通“疑难数据库(出版商)”最低求助积分说明 966703