Optimizing fetal health prediction: Ensemble modeling with fusion of feature selection and extraction techniques for cardiotocography data

随机森林 人工智能 计算机科学 特征选择 心电图 机器学习 集成学习 特征提取 朴素贝叶斯分类器 模式识别(心理学) 阿达布思 心跳 数据挖掘 分类器(UML) 怀孕 支持向量机 胎儿 生物 遗传学 计算机安全
作者
Ramdas Kapila,Sumalatha Saleti
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:107: 107973-107973 被引量:6
标识
DOI:10.1016/j.compbiolchem.2023.107973
摘要

Cardiotocography (CTG) captured the fetal heart rate and the timing of uterine contractions. Throughout pregnancy, CTG intelligent categorization is crucial for monitoring fetal health and preserving proper fetal growth and development. Since CTG provides information on the fetal heartbeat and uterus contractions, which helps determine if the fetus is pathologic or not, obstetricians frequently use it to evaluate a child's physical health during pregnancy. In the past, obstetricians have artificially analyzed CTG data, which is time-consuming and inaccurate. So, developing a fetal health categorization model is crucial as it may help to speed up the diagnosis and treatment and conserve medical resources. The CTG dataset is used in this study. To diagnose the illness, 7 machine learning models are employed, as well as ensemble strategies including voting and stacking classifiers. In order to choose and extract the most significant and critical attributes from the dataset, Feature Selection (FS) techniques like ANOVA and Chi-square, as well as Feature Extraction (FE) strategies like Principal Component Analysis (PCA) and Independent Component Analysis (ICA), are being used. We used the Synthetic Minority Oversampling Technique (SMOTE) approach to balance the dataset because it is unbalanced. In order to forecast the illness, the top 5 models are selected, and these 5 models are used in ensemble methods such as voting and stacking classifiers. The utilization of Stacking Classifiers (SC), which involve Adaboost and Random Forest (RF) as meta-classifiers for disease detection. The performance of the proposed SC with meta-classifier as RF model, which incorporates Chi-square with PCA, outperformed all other state-of-the-art models, achieving scores of 98.79%,98.88%,98.69%,96.32%, and 98.77% for accuracy, precision, recall, specificity, and f1-score respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
utgu完成签到,获得积分10
刚刚
1秒前
syh完成签到,获得积分10
1秒前
1秒前
Orange应助lizhiqian2024采纳,获得10
2秒前
luo发布了新的文献求助10
2秒前
3秒前
3秒前
CipherSage应助mujin采纳,获得10
3秒前
zx完成签到,获得积分10
4秒前
英姑应助雪上一枝蒿采纳,获得10
4秒前
4秒前
可爱的函函应助iceice采纳,获得10
4秒前
5秒前
bettle发布了新的文献求助10
5秒前
6秒前
hope发布了新的文献求助10
6秒前
布丁果冻完成签到,获得积分10
7秒前
薛定谔的猫完成签到,获得积分10
9秒前
静汉发布了新的文献求助10
9秒前
10秒前
12秒前
Mumu发布了新的文献求助10
12秒前
科研通AI5应助陈可欣采纳,获得10
13秒前
kll9797发布了新的文献求助20
14秒前
15秒前
15秒前
我是老大应助bettle采纳,获得80
16秒前
独特的发布了新的文献求助10
16秒前
西门迎天发布了新的文献求助10
17秒前
18秒前
19秒前
21秒前
凌云发布了新的文献求助10
21秒前
21秒前
科研通AI5应助隐德莱希采纳,获得20
22秒前
22秒前
lizhiqian2024发布了新的文献求助10
24秒前
yoyo发布了新的文献求助10
24秒前
刘若鑫发布了新的文献求助10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784142
求助须知:如何正确求助?哪些是违规求助? 3329244
关于积分的说明 10241014
捐赠科研通 3044742
什么是DOI,文献DOI怎么找? 1671268
邀请新用户注册赠送积分活动 800215
科研通“疑难数据库(出版商)”最低求助积分说明 759250