Investigation of spatiotemporal distribution and formation mechanisms of ozone pollution in eastern Chinese cities applying convolutional neural network

卷积神经网络 风速 臭氧 污染 污染物 分布(数学) 地面臭氧 环境科学 持续性 气象学 大气科学 地理 计算机科学 地质学 数学 生态学 生物 数学分析 机器学习
作者
Qiaoli Wang,Dongping Sheng,Chengzhi Wu,Xiaojie Ou,Shengdong Yao,Jingkai Zhao,Feili Li,Wei Li,Jianmeng Chen
出处
期刊:Journal of Environmental Sciences-china [Elsevier BV]
卷期号:148: 126-138 被引量:2
标识
DOI:10.1016/j.jes.2023.09.001
摘要

Severe ground-level ozone (O3) pollution over major Chinese cities has become one of the most challenging problems, which have deleterious effects on human health and the sustainability of society. This study explored the spatiotemporal distribution characteristics of ground-level O3 and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021. Then, a high-performance convolutional neural network (CNN) model was established by expanding the moment and the concentration variations to general factors. Finally, the response mechanism of O3 to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables. The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern. When the wind direction (WD) ranges from east to southwest and the wind speed (WS) ranges between 2 and 3 m/sec, higher O3 concentration prone to occur. At different temperatures (T), the O3 concentration showed a trend of first increasing and subsequently decreasing with increasing NO2 concentration, peaks at the NO2 concentration around 0.02 mg/m3. The sensitivity of NO2 to O3 formation is not easily affected by temperature, barometric pressure and dew point temperature. Additionally, there is a minimum IRNO2 at each temperature when the NO2 concentration is 0.03 mg/m3, and this minimum IRNO2 decreases with increasing temperature. The study explores the response mechanism of O3 with the change of driving variables, which can provide a scientific foundation and methodological support for the targeted management of O3 pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸的猕猴桃完成签到,获得积分20
刚刚
忧伤的彩虹完成签到,获得积分10
刚刚
1秒前
行者无疆完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
吹雪完成签到,获得积分0
2秒前
2秒前
3秒前
大个应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
zzjjww完成签到,获得积分10
3秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
Bertha应助科研通管家采纳,获得10
4秒前
星辰完成签到,获得积分10
4秒前
科研欣路完成签到,获得积分10
4秒前
CodeCraft应助liujj采纳,获得10
4秒前
可以的完成签到,获得积分10
4秒前
科研小虫完成签到,获得积分10
5秒前
新年好完成签到,获得积分10
6秒前
CH发布了新的文献求助10
6秒前
TL完成签到,获得积分10
6秒前
薄荷水发布了新的文献求助20
6秒前
7秒前
汉堡包应助路哈哈采纳,获得10
7秒前
Tina完成签到 ,获得积分10
7秒前
沐沐完成签到,获得积分10
8秒前
8秒前
辣椒完成签到,获得积分10
9秒前
花花发布了新的文献求助10
9秒前
fzzf完成签到,获得积分10
9秒前
愉快的隶完成签到,获得积分10
10秒前
chase完成签到 ,获得积分10
10秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092512
求助须知:如何正确求助?哪些是违规求助? 3631220
关于积分的说明 11509138
捐赠科研通 3342198
什么是DOI,文献DOI怎么找? 1837007
邀请新用户注册赠送积分活动 904914
科研通“疑难数据库(出版商)”最低求助积分说明 822646