Ethylene Glycol Intercalation Engineered Interplanar Spacing and Redox Activity of Ammonium Vanadate Nanoflowers as a High-Performance Cathode for Aqueous Zinc–Ion Batteries

乙二醇 氧化还原 水溶液 插层(化学) 无机化学 材料科学 阴极 化学工程 电化学 化学 电极 有机化学 物理化学 工程类
作者
Ji Chen,Liping Su,Xiaoqin Zhang,Yuxiang Chen,Shuangbao Wang,Qiaoji Zheng,Dunmin Lin
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:11 (33): 12467-12476 被引量:15
标识
DOI:10.1021/acssuschemeng.3c03386
摘要

Ammonium vanadate (NH4V4O10) has attracted considerable focus as a cathode material with great potential for aqueous zinc ion batteries due to its multielectron redox reaction of V and low cost; however, problems such as structural instability and slow reaction kinetics during cycling hinder its widespread application. Herein, ethylene glycol is intercalated into the interlayer of NH4V4O10 to develop high-performance cathodes for aqueous zinc ion batteries. The layer spacing of the material is expanded by ∼23% after the intercalation of ethylene glycol, providing a large interlaminar channel for Zn2+ diffusion, while the addition of ethylene glycol leads to the micromorphology of nanoflowers self-assembled by ultrathin nanosheets, exposing more active sites for ion and electron transport. Moreover, the successful partial substitution of ethylene glycol for NH4+ in the NH4V4O10-based material results in an increase in the level of V5+ and alleviates irreversible deamination, promoting efficient redox reactions. In addition, the introduction of ethylene glycol efficiently decreases the band gap of NH4V4O10 and, thus, improves the conductivity. As a result, the ethylene glycol-intercalated NH4V4O10 cathode provides a high reversible capacity of 516 mAh g–1 at 0.5 A g–1 and achieves an excellent cycling performance with a capacity retention rate of 91% after 1000 cycles at 10 A g–1. This work provides a feasible strategy to develop high-performance layered V-based cathodes for AZIBs by the coregulation of crystal structure, micromorphology, and redox chemistry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助玉龙月采纳,获得10
2秒前
月光入梦完成签到 ,获得积分10
2秒前
22发布了新的文献求助10
4秒前
领导范儿应助moon采纳,获得10
7秒前
闪闪的斑马完成签到,获得积分10
9秒前
12秒前
无限小天鹅完成签到,获得积分10
13秒前
waayu完成签到 ,获得积分10
13秒前
哟呵完成签到,获得积分0
13秒前
13秒前
123完成签到,获得积分10
14秒前
高兴的斑马完成签到 ,获得积分10
18秒前
benlaron发布了新的文献求助30
20秒前
20秒前
MRM完成签到 ,获得积分10
30秒前
77完成签到,获得积分10
31秒前
32秒前
Lucas应助benlaron采纳,获得30
32秒前
怡然的白开水完成签到 ,获得积分10
33秒前
34秒前
艾瑞克完成签到,获得积分10
40秒前
顺心香菇应助科研通管家采纳,获得60
40秒前
FashionBoy应助科研通管家采纳,获得10
40秒前
NexusExplorer应助科研通管家采纳,获得10
40秒前
张小苟完成签到,获得积分10
40秒前
pluto应助科研通管家采纳,获得10
40秒前
小马甲应助科研通管家采纳,获得10
40秒前
顾矜应助zz采纳,获得10
40秒前
小二郎应助科研通管家采纳,获得10
40秒前
40秒前
40秒前
NexusExplorer应助科研通管家采纳,获得10
41秒前
Dr.老王完成签到,获得积分10
43秒前
43秒前
45秒前
缥缈纲完成签到,获得积分10
46秒前
47秒前
benlaron完成签到,获得积分10
47秒前
mmz完成签到 ,获得积分10
48秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214659
捐赠科研通 3038693
什么是DOI,文献DOI怎么找? 1667611
邀请新用户注册赠送积分活动 798220
科研通“疑难数据库(出版商)”最低求助积分说明 758315