Question-Aware Global-Local Video Understanding Network for Audio-Visual Question Answering

计算机科学 答疑 模式 模态(人机交互) 任务(项目管理) 透视图(图形) 视听 特征(语言学) 特征提取 人工智能 情报检索 语音识别 多媒体 语言学 社会科学 哲学 管理 社会学 经济
作者
Zailong Chen,Lei Wang,Peng Wang,Peng Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 4109-4119 被引量:6
标识
DOI:10.1109/tcsvt.2023.3318220
摘要

As a newly emerging task, audio-visual question answering (AVQA) has attracted research attention. Compared with traditional single-modality (e.g., audio or visual) QA tasks, it poses new challenges due to the higher complexity of feature extraction and fusion brought by the multimodal inputs. First, AVQA requires more comprehensive understanding of the scene which involves both audio and visual information; Second, in the presence of more information, feature extraction has to be better connected with a given question; Third, features from different modalities need to be sufficiently correlated and fused. To address this situation, this work proposes a novel framework for multimodal question answering task. It characterises an audiovisual scene at both global and local levels, and within each level, the features from different modalities are well fused. Furthermore, the given question is utilised to guide not only the feature extraction at the local level but also the final fusion of global and local features to predict the answer. Our framework provides a new perspective for audio-visual scene understanding through focusing on both general and specific representations as well as aggregating multimodalities by prioritizing question-related information. As experimentally demonstrated, our method significantly improves the existing audio-visual question answering performance, with the averaged absolute gain of 3.3% and 3.1% on MUSIC-AVQA and AVQA datasets, respectively. Moreover, the ablation study verifies the necessity and effectiveness of our design. Our code will be publicly released.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
其醉完成签到 ,获得积分10
2秒前
2秒前
吕玥函发布了新的文献求助10
3秒前
4秒前
5秒前
迷路的士晋完成签到,获得积分20
6秒前
7秒前
Lucas应助酷酷一笑采纳,获得10
9秒前
9秒前
jck发布了新的文献求助10
10秒前
10秒前
CipherSage应助吕玥函采纳,获得10
10秒前
鳗鱼夜阑发布了新的文献求助10
11秒前
lyian完成签到 ,获得积分10
11秒前
斯可发布了新的文献求助10
12秒前
springwyc应助幸福大白采纳,获得10
12秒前
12秒前
13秒前
Meyako应助橘子采纳,获得10
15秒前
刘珍荣完成签到,获得积分10
17秒前
18秒前
Meyako应助蓝色天空采纳,获得10
18秒前
18秒前
吴彦祖发布了新的文献求助10
18秒前
李健应助Yang采纳,获得10
19秒前
FashionBoy应助七七丫采纳,获得50
19秒前
Sue完成签到 ,获得积分10
19秒前
苗条爬梯人完成签到,获得积分10
20秒前
星辰大海应助奋斗土豆采纳,获得10
21秒前
curtisness应助巫千秋采纳,获得10
22秒前
23秒前
Nnn完成签到,获得积分10
24秒前
深情的幼南完成签到,获得积分10
26秒前
27秒前
曾经青亦完成签到,获得积分10
30秒前
30秒前
博修发布了新的文献求助10
30秒前
嘉丽的后花园完成签到,获得积分10
31秒前
吴彦祖发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4776924
求助须知:如何正确求助?哪些是违规求助? 4108511
关于积分的说明 12709414
捐赠科研通 3829981
什么是DOI,文献DOI怎么找? 2112741
邀请新用户注册赠送积分活动 1136544
关于科研通互助平台的介绍 1020367