Question-Aware Global-Local Video Understanding Network for Audio-Visual Question Answering

计算机科学 答疑 模式 模态(人机交互) 任务(项目管理) 透视图(图形) 视听 特征(语言学) 特征提取 人工智能 情报检索 自然语言处理 多媒体 语言学 社会科学 哲学 管理 社会学 经济
作者
Zailong Chen,Lei Wang,Peng Wang,Peng Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tcsvt.2023.3318220
摘要

As a newly emerging task, audio-visual question answering (AVQA) has attracted research attention. Compared with traditional single-modality (e.g., audio or visual) QA tasks, it poses new challenges due to the higher complexity of feature extraction and fusion brought by the multimodal inputs. First, AVQA requires more comprehensive understanding of the scene which involves both audio and visual information; Second, in the presence of more information, feature extraction has to be better connected with a given question; Third, features from different modalities need to be sufficiently correlated and fused. To address this situation, this work proposes a novel framework for multimodal question answering task. It characterises an audiovisual scene at both global and local levels, and within each level, the features from different modalities are well fused. Furthermore, the given question is utilised to guide not only the feature extraction at the local level but also the final fusion of global and local features to predict the answer. Our framework provides a new perspective for audio-visual scene understanding through focusing on both general and specific representations as well as aggregating multimodalities by prioritizing question-related information. As experimentally demonstrated, our method significantly improves the existing audio-visual question answering performance, with the averaged absolute gain of 3.3% and 3.1% on MUSIC-AVQA and AVQA datasets, respectively. Moreover, the ablation study verifies the necessity and effectiveness of our design. Our code will be publicly released.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
刚刚
SCINEXUS应助科研通管家采纳,获得50
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
子车茗应助科研通管家采纳,获得20
1秒前
平常从蓉完成签到,获得积分0
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
jade应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
淡然冬灵应助科研通管家采纳,获得30
2秒前
2秒前
折柳完成签到 ,获得积分10
4秒前
跳跃隶完成签到,获得积分10
5秒前
洋芋锅巴发布了新的文献求助50
6秒前
@_@完成签到,获得积分10
7秒前
自由寻琴发布了新的文献求助10
8秒前
旧城旧巷等旧人完成签到 ,获得积分10
8秒前
小仙完成签到,获得积分10
8秒前
9秒前
大大完成签到 ,获得积分10
10秒前
旷野发布了新的文献求助10
10秒前
明亮的月光完成签到,获得积分10
11秒前
tcmlida完成签到,获得积分10
13秒前
rudjs完成签到,获得积分10
13秒前
善学以致用应助自由寻琴采纳,获得10
15秒前
15秒前
研友_8KX15L完成签到 ,获得积分10
16秒前
shimhjy应助rudjs采纳,获得20
17秒前
孺子牛发布了新的文献求助10
18秒前
俏皮的松鼠完成签到 ,获得积分10
19秒前
自由的信仰完成签到,获得积分10
19秒前
zhiwei发布了新的文献求助10
20秒前
大吴克发布了新的文献求助10
20秒前
神外王001完成签到 ,获得积分10
22秒前
不想看文献完成签到,获得积分10
24秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801096
求助须知:如何正确求助?哪些是违规求助? 3346745
关于积分的说明 10330078
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807509
科研通“疑难数据库(出版商)”最低求助积分说明 763726