Optimizing platelet transfusion through a personalized deep learning risk assessment system for demand management

医学 接收机工作特性 曲线下面积 输血医学 深度学习 学习曲线 急诊医学 内科学 输血 机器学习 计算机科学 操作系统
作者
Merlin Engelke,Cynthia S. Schmidt,Giulia Baldini,Vicky Parmar,René Hosch,Katarzyna Borys,Sven Koitka,Amin T. Turki,Johannes Haubold,Péter Horn,Felix Nensa
出处
期刊:Blood [Elsevier BV]
卷期号:142 (26): 2315-2326 被引量:3
标识
DOI:10.1182/blood.2023021172
摘要

Abstract Platelet demand management (PDM) is a resource-consuming task for physicians and transfusion managers of large hospitals. Inpatient numbers and institutional standards play significant roles in PDM. However, reliance on these factors alone commonly results in platelet shortages. Using data from multiple sources, we developed, validated, tested, and implemented a patient-specific approach to support PDM that uses a deep learning–based risk score to forecast platelet transfusions for each hospitalized patient in the next 24 hours. The models were developed using retrospective electronic health record data of 34 809 patients treated between 2017 and 2022. Static and time-dependent features included demographics, diagnoses, procedures, blood counts, past transfusions, hematotoxic medications, and hospitalization duration. Using an expanding window approach, we created a training and live-prediction pipeline with a 30-day input and 24-hour forecast. Hyperparameter tuning determined the best validation area under the precision-recall curve (AUC-PR) score for long short-term memory deep learning models, which were then tested on independent data sets from the same hospital. The model tailored for hematology and oncology patients exhibited the best performance (AUC-PR, 0.84; area under the receiver operating characteristic curve [ROC-AUC], 0.98), followed by a multispecialty model covering all other patients (AUC-PR, 0.73). The model specific to cardiothoracic surgery had the lowest performance (AUC-PR, 0.42), likely because of unexpected intrasurgery bleedings. To our knowledge, this is the first deep learning–based platelet transfusion predictor enabling individualized 24-hour risk assessments at high AUC-PR. Implemented as a decision-support system, deep-learning forecasts might improve patient care by detecting platelet demand earlier and preventing critical transfusion shortages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
916应助一屿采纳,获得20
刚刚
luminous发布了新的文献求助10
2秒前
2秒前
Oliver发布了新的文献求助10
5秒前
6秒前
9秒前
ss应助阳光的紫丝采纳,获得20
11秒前
11秒前
11秒前
LIJINGGE发布了新的文献求助10
12秒前
jane完成签到 ,获得积分10
13秒前
漫漫楚威风完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
sss2021发布了新的文献求助10
20秒前
gg发布了新的文献求助10
20秒前
ni完成签到,获得积分10
22秒前
23秒前
小鹿斑比完成签到 ,获得积分10
23秒前
FashionBoy应助迅速凡旋采纳,获得10
24秒前
luminous完成签到,获得积分10
28秒前
香蕉觅云应助秋言采纳,获得10
28秒前
zhaoty完成签到,获得积分10
30秒前
闪闪雅阳发布了新的文献求助10
30秒前
冰墩墩完成签到,获得积分10
33秒前
科研通AI2S应助洁净的钢笔采纳,获得10
34秒前
35秒前
jenningseastera应助Raymond采纳,获得10
35秒前
懒洋洋大王完成签到,获得积分10
35秒前
36秒前
36秒前
JamesPei应助端庄梦桃采纳,获得10
37秒前
zzuzll完成签到,获得积分10
37秒前
传奇3应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
dududu发布了新的文献求助10
39秒前
情怀应助懒洋洋大王采纳,获得10
39秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401