已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A robust multi-scale learning network with quasi-hyperbolic momentum-based Adam optimizer for bearing intelligent fault diagnosis under sample imbalance scenarios and strong noise environment

方位(导航) 断层(地质) 计算机科学 噪音(视频) 工程类 人工神经网络 人工智能 数据挖掘 机器学习 模式识别(心理学) 图像(数学) 地质学 地震学
作者
Maoyou Ye,Xiaoan Yan,Ning Chen,Ying Liu
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (3): 1664-1686 被引量:12
标识
DOI:10.1177/14759217231192363
摘要

Due to adverse working conditions of rotating machinery in actual engineering, bearing fault data are more difficult to acquire compared to normal data. That said, the real collected bearing vibration data are usually characterized by imbalance. Meanwhile, fault information of the raw collected bearing vibration data is effortlessly drowned out by strong noises, which indicates that it is awkward to efficiently recognize bearing fault states via using traditional fault diagnosis methods under this background. To overcome these problems, this research proposes an individual approach formally intituled as robust multi-scale learning network (RMSLN) with quasi-hyperbolic momentum-based Adam (QHAdam) optimizer for bearing fault diagnosis, which mainly includes convolution-pooling operation, multi-scale branch, and classification layer. Within the proposed method, the channel attention mechanism based on squeezed excitation network is embedded into the multi-scale branch in the form of residual connections, which not only reinforce important information and weaken noise interference, but also capture fault features more comprehensively and enhance the discrimination of fault states with fewer samples. Additionally, in the training process, QHAdam optimizer is introduced to tightly control the loss of RMSLN to enable a faster and smoother convergence. Two groups of experimental bearing data are studied to support the availability of presented approach, and several traditional fault diagnosis methods and representative imbalance fault diagnosis approaches are compared in four evaluation metrics (accuracy, macro-precision, macro-recall, and macro-F1 score) to highlight the advantages of the presented method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
斯文败类应助张志伟采纳,获得10
6秒前
务实的犀牛完成签到,获得积分10
6秒前
meng完成签到,获得积分10
7秒前
michael_suo发布了新的文献求助10
7秒前
冰鱼发布了新的文献求助10
9秒前
11秒前
cc完成签到 ,获得积分10
14秒前
张志伟完成签到,获得积分10
15秒前
michael_suo完成签到,获得积分10
15秒前
16秒前
21秒前
GH发布了新的文献求助60
32秒前
科研通AI2S应助lei采纳,获得10
36秒前
尼尼发布了新的文献求助10
40秒前
信封完成签到 ,获得积分10
41秒前
甜美砖家完成签到 ,获得积分10
41秒前
52秒前
52秒前
罗伊黄完成签到 ,获得积分10
53秒前
田様应助GH采纳,获得30
54秒前
55秒前
celine发布了新的文献求助10
57秒前
sxs完成签到 ,获得积分10
59秒前
平淡道天完成签到,获得积分10
1分钟前
木林森林木完成签到 ,获得积分10
1分钟前
张志伟发布了新的文献求助10
1分钟前
大大的DY完成签到 ,获得积分10
1分钟前
科研通AI5应助celine采纳,获得10
1分钟前
1分钟前
芋泥好暖椰y完成签到 ,获得积分10
1分钟前
1分钟前
研友_8DAv0L发布了新的文献求助10
1分钟前
科研通AI5应助又绿采纳,获得20
1分钟前
ssffzb2008发布了新的文献求助10
1分钟前
1分钟前
研友_8DAv0L完成签到,获得积分10
1分钟前
天天快乐应助1234采纳,获得10
1分钟前
沙雕续命发布了新的文献求助10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804086
求助须知:如何正确求助?哪些是违规求助? 3348895
关于积分的说明 10340859
捐赠科研通 3065101
什么是DOI,文献DOI怎么找? 1682882
邀请新用户注册赠送积分活动 808555
科研通“疑难数据库(出版商)”最低求助积分说明 764595