Trust criteria for artificial intelligence in health: normative and epistemic considerations

规范性 相关性(法律) 代理(哲学) 医疗保健 主题分析 质量(理念) 计算机科学 人工智能 心理学 实证研究 知识管理 定性研究 认识论 社会学 社会科学 哲学 政治学 法学 经济 经济增长
作者
Kristin M. Kostick,Benjamin Lang,Jared N. Smith,Meghan E. Hurley,Jennifer Blumenthal‐Barby
出处
期刊:Journal of Medical Ethics [BMJ]
卷期号:50 (8): 544-551 被引量:4
标识
DOI:10.1136/jme-2023-109338
摘要

Rapid advancements in artificial intelligence and machine learning (AI/ML) in healthcare raise pressing questions about how much users should trust AI/ML systems, particularly for high stakes clinical decision-making. Ensuring that user trust is properly calibrated to a tool’s computational capacities and limitations has both practical and ethical implications, given that overtrust or undertrust can influence over-reliance or under-reliance on algorithmic tools, with significant implications for patient safety and health outcomes. It is, thus, important to better understand how variability in trust criteria across stakeholders, settings, tools and use cases may influence approaches to using AI/ML tools in real settings. As part of a 5-year, multi-institutional Agency for Health Care Research and Quality-funded study, we identify trust criteria for a survival prediction algorithm intended to support clinical decision-making for left ventricular assist device therapy, using semistructured interviews (n=40) with patients and physicians, analysed via thematic analysis. Findings suggest that physicians and patients share similar empirical considerations for trust, which were primarily epistemic in nature, focused on accuracy and validity of AI/ML estimates. Trust evaluations considered the nature, integrity and relevance of training data rather than the computational nature of algorithms themselves, suggesting a need to distinguish ‘source’ from ‘functional’ explainability. To a lesser extent, trust criteria were also relational (endorsement from others) and sometimes based on personal beliefs and experience. We discuss implications for promoting appropriate and responsible trust calibration for clinical decision-making use AI/ML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的皮卡丘完成签到 ,获得积分10
6秒前
halona完成签到,获得积分10
6秒前
舒心的青亦完成签到 ,获得积分10
6秒前
13秒前
马大翔完成签到,获得积分0
14秒前
儒雅的如松完成签到 ,获得积分10
15秒前
HaojunWang完成签到 ,获得积分10
21秒前
小白菜发布了新的文献求助10
28秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
摸鱼仙人应助科研通管家采纳,获得10
30秒前
Singularity应助科研通管家采纳,获得10
30秒前
Singularity应助科研通管家采纳,获得10
30秒前
Singularity应助科研通管家采纳,获得10
30秒前
Singularity应助科研通管家采纳,获得10
30秒前
无花果应助科研通管家采纳,获得10
30秒前
RaccoonTao完成签到 ,获得积分10
34秒前
37秒前
大方的笑萍完成签到 ,获得积分10
40秒前
ZXT完成签到 ,获得积分10
42秒前
bzdjsmw完成签到 ,获得积分10
43秒前
44秒前
45秒前
阿然完成签到,获得积分10
46秒前
倔强的大萝卜完成签到 ,获得积分0
47秒前
坚强的铅笔完成签到 ,获得积分10
49秒前
49秒前
老迟到的土豆完成签到 ,获得积分10
51秒前
顺心凡之完成签到,获得积分10
56秒前
lin给牧紫菱的求助进行了留言
57秒前
胖胖橘完成签到 ,获得积分10
58秒前
每天都很忙完成签到 ,获得积分10
1分钟前
shaw完成签到,获得积分10
1分钟前
懒猫完成签到,获得积分10
1分钟前
六七完成签到 ,获得积分10
1分钟前
関电脑完成签到,获得积分10
1分钟前
清风悠笛完成签到,获得积分10
1分钟前
8D完成签到,获得积分10
1分钟前
单小芫完成签到 ,获得积分10
1分钟前
爱吃秋刀鱼的大脸猫完成签到,获得积分10
1分钟前
微笑芒果完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798555
求助须知:如何正确求助?哪些是违规求助? 3344104
关于积分的说明 10318518
捐赠科研通 3060679
什么是DOI,文献DOI怎么找? 1679753
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353