隐写术
隐写分析技术
计算机科学
信息隐藏
图像(数学)
隐写工具
人工智能
密码学
像素
二进制数
计算机视觉
模式识别(心理学)
数据挖掘
理论计算机科学
计算机安全
数学
算术
作者
Kevin Alex Zhang,Alfredo Cuesta-Infante,Lei Xu,Kalyan Veeramachaneni
出处
期刊:Cornell University - arXiv
日期:2019-01-01
被引量:119
标识
DOI:10.48550/arxiv.1901.03892
摘要
Image steganography is a procedure for hiding messages inside pictures. While other techniques such as cryptography aim to prevent adversaries from reading the secret message, steganography aims to hide the presence of the message itself. In this paper, we propose a novel technique for hiding arbitrary binary data in images using generative adversarial networks which allow us to optimize the perceptual quality of the images produced by our model. We show that our approach achieves state-of-the-art payloads of 4.4 bits per pixel, evades detection by steganalysis tools, and is effective on images from multiple datasets. To enable fair comparisons, we have released an open source library that is available online at https://github.com/DAI-Lab/SteganoGAN.
科研通智能强力驱动
Strongly Powered by AbleSci AI