Machine-learning models for the prediction of ideal surgical outcomes in patients with adult spinal deformity

脊柱畸形 逻辑回归 接收机工作特性 骨盆倾斜 医学 畸形 矢状面 物理疗法 外科 骨盆 内科学 放射科
作者
Dongfan Wang,Qijun Wang,Peng Cui,Shuaikang Wang,Di Han,Xiaolong Chen,Shibao Lu
出处
期刊:The bone & joint journal [British Editorial Society of Bone & Joint Surgery]
卷期号:107-B (3): 337-345
标识
DOI:10.1302/0301-620x.107b3.bjj-2024-1220.r1
摘要

Aims Adult spinal deformity (ASD) surgery can reduce pain and disability. However, the actual surgical efficacy of ASD in doing so is far from desirable, with frequent complications and limited improvement in quality of life. The accurate prediction of surgical outcome is crucial to the process of clinical decision-making. Consequently, the aim of this study was to develop and validate a model for predicting an ideal surgical outcome (ISO) two years after ASD surgery. Methods We conducted a retrospective analysis of 458 consecutive patients who had undergone spinal fusion surgery for ASD between January 2016 and June 2022. The outcome of interest was achievement of the ISO, defined as an improvement in patient-reported outcomes exceeding the minimal clinically important difference, with no postoperative complications. Three machine-learning (ML) algorithms – LASSO, RFE, and Boruta – were used to identify key variables from the collected data. The dataset was randomly split into training (60%) and test (40%) sets. Five different ML models were trained, including logistic regression, random forest, XGBoost, LightGBM, and multilayer perceptron. The primary model evaluation metric was area under the receiver operating characteristic curve (AUROC). Results The analysis included 208 patients (mean age 64.62 years (SD 8.21); 48 male (23.1%), 160 female (76.9%)). Overall, 42.8% of patients (89/208) achieved the ideal surgical outcome. Eight features were identified as key variables affecting prognosis: depression, osteoporosis, frailty, failure of pelvic compensation, relative functional cross-sectional area of the paraspinal muscles, postoperative sacral slope, pelvic tilt match, and sagittal age-adjusted score match. The best prediction model was LightGBM, achieving the following performance metrics: AUROC 0.888 (95% CI 0.810 to 0.966); accuracy 0.843; sensitivity 0.829; specificity 0.854; positive predictive value 0.806; and negative predictive value 0.872. Conclusion In this prognostic study, we developed a machine-learning model that accurately predicted outcome after surgery for ASD. The model is built on routinely modifiable indicators, thereby facilitating its integration into clinical practice to promote optimized decision-making. Cite this article: Bone Joint J 2025;107-B(3):337–345.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hdh016发布了新的文献求助10
1秒前
香蕉觅云应助亦承梦采纳,获得10
3秒前
焦头鹅完成签到,获得积分10
4秒前
朴素易烟发布了新的文献求助10
4秒前
ryan发布了新的文献求助10
5秒前
5秒前
6秒前
hdh016完成签到,获得积分10
7秒前
7秒前
Akim应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得30
7秒前
科目三应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得20
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
8秒前
Hello应助科研通管家采纳,获得10
8秒前
小星星发布了新的文献求助10
10秒前
zty568发布了新的文献求助10
10秒前
10秒前
feixiangmeng发布了新的文献求助10
12秒前
亦承梦完成签到,获得积分10
13秒前
科研通AI5应助风啊采纳,获得10
13秒前
13秒前
paixingxing发布了新的文献求助10
13秒前
14秒前
pluto应助星际帅帅采纳,获得10
15秒前
亦承梦发布了新的文献求助10
17秒前
17秒前
leemiii关注了科研通微信公众号
18秒前
19秒前
胖胖完成签到 ,获得积分0
23秒前
24秒前
坦率蓝血完成签到,获得积分10
25秒前
mqbucm完成签到,获得积分10
26秒前
27秒前
szx完成签到,获得积分10
27秒前
老西瓜完成签到,获得积分10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784187
求助须知:如何正确求助?哪些是违规求助? 3329320
关于积分的说明 10241363
捐赠科研通 3044768
什么是DOI,文献DOI怎么找? 1671305
邀请新用户注册赠送积分活动 800219
科研通“疑难数据库(出版商)”最低求助积分说明 759288