Integration Analysis of Circle‐Sequencing and Transcriptome Reveals Extrachromosomal Circular DNA Is Involved in the Regulation of Vascular Cambium Annual Cycle in Chinese Pine

生物 形成层 维管形成层 转录组 油松 染色体外DNA 遗传学 血管组织 植物 基因组 基因 进化生物学 细胞生物学 木质部 基因表达
作者
Yushuang Song,Keji Yu,Yayu Guo,Yuan Cao,Changwen Xu,Lingyu Ma,Zhun Zhang,Yiqun Liu,Jinhuan Yin,Zijian Hu,Shiya Shen,Huimin Xu,Xi Zhang,Shihui Niu,Yaning Cui,Jinxing Lin
出处
期刊:Plant Cell and Environment [Wiley]
标识
DOI:10.1111/pce.15549
摘要

ABSTRACT Extrachromosomal circular DNA (eccDNA) has been reported to play important roles in regulating genome replication, immune response and cellular communications in humans and animals. Recently, the presence of eccDNA has also recently been discovered in Arabidopsis , Amaranthus palmeri and Oryza sativa . Nevertheless, whether eccDNA exists and has roles in woody plants remains enigmatic. Here, we conducted a comprehensive analysis of morphological imaging, transcriptome and eccDNA expression profiles during different development stages of vascular cambium in Chinese pine ( Pinus tabuliformis ( P. tabuliformis )). It was found that eccDNA existed in the different development stages of vascular cambium and derived from each chromosome of P. tabuliformis . Further analysis revealed that eccDNA was not entirely random but rather exhibited a certain preference in exon regions. We also identified a high frequency of AA/AT/TT/TA dinucleotide repeats at the junctions of eccDNA and found that the length distribution of eccDNA was clustered between 158 and 316 bp. Notably, integration analysis revealed that differentially expressed eccDNAs and their annotated genes exhibited more significant dynamic changes in the dormant stage as compared with other stages. Taken together, our results provide new insights into the important mechanisms by which eccDNA influences vascular cambium development, enhancing our understanding of its role in tree plasticity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity发布了新的文献求助20
2秒前
xiong发布了新的文献求助10
2秒前
2秒前
fc发布了新的文献求助10
3秒前
feijelly发布了新的文献求助10
3秒前
科研通AI5应助酷酷的靖采纳,获得10
3秒前
3秒前
安塘完成签到,获得积分10
4秒前
4秒前
白萝卜看关注了科研通微信公众号
5秒前
周思齐发布了新的文献求助10
6秒前
6秒前
6秒前
baishui发布了新的文献求助10
7秒前
7秒前
8秒前
李晓晓发布了新的文献求助10
8秒前
10秒前
大个应助sofia采纳,获得10
10秒前
在水一方应助ddk采纳,获得10
11秒前
11秒前
11秒前
Olivia发布了新的文献求助10
12秒前
12秒前
12秒前
ya发布了新的文献求助30
13秒前
秋婷完成签到 ,获得积分10
13秒前
无花果应助聪慧的盼夏采纳,获得10
13秒前
CipherSage应助Singularity采纳,获得10
13秒前
安详的惜梦完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
Owen应助不爱吃苹果采纳,获得10
16秒前
16秒前
戴斌彬发布了新的文献求助10
16秒前
abcd发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4738251
求助须知:如何正确求助?哪些是违规求助? 4090187
关于积分的说明 12652140
捐赠科研通 3799354
什么是DOI,文献DOI怎么找? 2097936
邀请新用户注册赠送积分活动 1123561
科研通“疑难数据库(出版商)”最低求助积分说明 998821