Low‐Field‐Driven Domain Wall Motion in Wurtzite Ferroelectrics

材料科学 纤锌矿晶体结构 凝聚态物理 领域(数学) 运动(物理) 领域(数学分析) 磁畴壁(磁性) 工程物理 纳米技术 经典力学 磁场 冶金 物理 量子力学 数学分析 数学 磁化 纯数学
作者
Mingrui Liu,Dan Li,Zhongran Liu,Yuan Gao,Hang Zang,Zhiming Shi,Jianwei Ben,Ke Jiang,Bo Lai,Wei Zhang,Shuai Wang,Wei Lü,Xiaojuan Sun,He Tian,Dabing Li
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202505988
摘要

Abstract Wurtzite‐type nitride ferroelectrics emerge as a breakthrough platform for silicon‐compatible nonvolatile memory technology. However, the inherent polarization reversal mechanisms involving diatomic displacements introduce complex domain dynamics and elevate energy barriers, manifesting as excessive coercive fields ( E c ) and pronounced wake‐up effects that hinder reliable device operation. Here, these challenges are resolved by enabling the low‐field‐driven domain wall motion in representative wurtzite ferroelectrics (Al 0.75 Sc 0.25 N). In situ transmission electron microscopy measurements reveal that polarization switching proceeds via preferential domain‐wall transverse propagation perpendicular to the [0001] axis, preceding longitudinal propagation along the [0001] axis. First‐principles simulations quantify a striking 98% reduction in energy barrier for transverse migration (0.00188 eV f.u −1 ). Compared to longitudinal motion (0.092 eV f.u −1 ). This switching kinetic fundamentally challenges the conventional Kolmogorov‐Avrami‐Ishibashi model. By controlling nucleation polarity to promote the transverse motion of the domain wall, E c is reduced by 25%, with a high remanent polarization maintained and wake‐up effects eliminated across 6‐inch films. The methodology establishes a universal design principle for manipulating polarization switching in wurtzite ferroelectrics, paving the way for integrated low‐energy, high‐stability, uniformly‐performing ferroelectric devices in large‐scale complementary metal oxide semiconductor (CMOS) architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_n0QYAZ完成签到 ,获得积分10
刚刚
传奇3应助舟夏采纳,获得10
1秒前
今后应助lt采纳,获得10
2秒前
3秒前
爆米花应助Erren采纳,获得10
4秒前
lll完成签到,获得积分10
4秒前
luobeimin发布了新的文献求助10
4秒前
研友_VZG7GZ应助orange采纳,获得30
4秒前
背后寻云完成签到,获得积分20
5秒前
5秒前
5秒前
张三完成签到,获得积分10
5秒前
小蓝发布了新的文献求助30
5秒前
5秒前
6秒前
小录完成签到,获得积分10
6秒前
烟花应助fish采纳,获得30
7秒前
王大帅完成签到,获得积分20
7秒前
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
8秒前
leo发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
所所应助科研通管家采纳,获得30
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
10秒前
王大帅发布了新的文献求助10
10秒前
虚幻的太清完成签到,获得积分10
10秒前
10秒前
10秒前
思源应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
11秒前
lyncee应助科研通管家采纳,获得50
11秒前
11秒前
沉默寄凡发布了新的文献求助20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608065
求助须知:如何正确求助?哪些是违规求助? 4692658
关于积分的说明 14875241
捐赠科研通 4716577
什么是DOI,文献DOI怎么找? 2544035
邀请新用户注册赠送积分活动 1509052
关于科研通互助平台的介绍 1472758