材料科学
纤锌矿晶体结构
凝聚态物理
领域(数学)
运动(物理)
领域(数学分析)
磁畴壁(磁性)
工程物理
纳米技术
经典力学
磁场
冶金
物理
量子力学
数学
数学分析
磁化
纯数学
锌
作者
Mingrui Liu,Dan Li,Zhongran Liu,Yuan Gao,Hang Zang,Zhiming Shi,Jianwei Ben,Ke Jiang,Bo Lai,Wei Zhang,Shuai Wang,Wei Lü,Xiaojuan Sun,He Tian,Dabing Li
标识
DOI:10.1002/adma.202505988
摘要
Abstract Wurtzite‐type nitride ferroelectrics emerge as a breakthrough platform for silicon‐compatible nonvolatile memory technology. However, the inherent polarization reversal mechanisms involving diatomic displacements introduce complex domain dynamics and elevate energy barriers, manifesting as excessive coercive fields ( E c ) and pronounced wake‐up effects that hinder reliable device operation. Here, these challenges are resolved by enabling the low‐field‐driven domain wall motion in representative wurtzite ferroelectrics (Al 0.75 Sc 0.25 N). In situ transmission electron microscopy measurements reveal that polarization switching proceeds via preferential domain‐wall transverse propagation perpendicular to the [0001] axis, preceding longitudinal propagation along the [0001] axis. First‐principles simulations quantify a striking 98% reduction in energy barrier for transverse migration (0.00188 eV f.u −1 ). Compared to longitudinal motion (0.092 eV f.u −1 ). This switching kinetic fundamentally challenges the conventional Kolmogorov‐Avrami‐Ishibashi model. By controlling nucleation polarity to promote the transverse motion of the domain wall, E c is reduced by 25%, with a high remanent polarization maintained and wake‐up effects eliminated across 6‐inch films. The methodology establishes a universal design principle for manipulating polarization switching in wurtzite ferroelectrics, paving the way for integrated low‐energy, high‐stability, uniformly‐performing ferroelectric devices in large‐scale complementary metal oxide semiconductor (CMOS) architectures.
科研通智能强力驱动
Strongly Powered by AbleSci AI