Automated Measurements of Spinal Parameters for Scoliosis Using Deep Learning

脊柱侧凸 医学 柯布角 射线照相术 矢状面 冠状面 分割 人工智能 卷积神经网络 核医学 口腔正畸科 计算机科学 放射科 外科
作者
Xia Meng,Shan Zhu,Qilong Yang,Fengling Zhu,Zhi Wang,Xiaoming Liu,Pei Dong,Shuaikun Wang,Lianxi Fan
出处
期刊:Spine [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/brs.0000000000005280
摘要

Study Design. Retrospective single-institution study. Objective. To develop and validate an automated convolutional neural network (CNN) to measure the Cobb angle, T1 tilt angle, coronal balance, clavicular angle, height of the shoulders, T5–T12 Cobb angle, and sagittal balance for accurate scoliosis diagnosis. Summary of Background Data. Scoliosis, characterized by a Cobb angle >10°, requires accurate and reliable measurements to guide treatment. Traditional manual measurements are time-consuming and have low inter- and intra-observer reliability. While some automated tools exist, they often require manual intervention and focus primarily on the Cobb angle. Methods. In this study, we utilized four datasets comprising the anterior-posterior (AP) and lateral radiographs of 1682 patients with scoliosis. The CNN includes coarse segmentation, landmark localization, and fine segmentation. The measurements were evaluated using the dice coefficient, mean absolute error (MAE), and percentage of correct key-points (PCK) with a 3-mm threshold. An internal testing set, including 87 adolescent (7-16 years) and 26 older adult patients (≥60 years), was used to evaluate the agreement between automated and manual measurements. Results. The automated measures by the CNN achieved high mean dice coefficients (>0.90), PCK of 89.7%-93.7%, and MAE for vertebral corners of 2.87 mm-3.62 mm on AP radiographs. Agreement on the internal testing set for manual measurements was acceptable, with an MAE of 0.26 mm/°-0.51 mm/° for the adolescent subgroup and 0.29 mm/°-4.93 mm/° for the older adult subgroup on AP radiographs. The MAE for the T5–T12 Cobb angle and sagittal balance, on lateral radiographs, was 1.03° and 0.84 mm, respectively, in adolescents, and 4.60° and 9.41 mm, respectively, in older adults. Automated measurement time was significantly shorter compared to manual measurements. Conclusion. The deep learning automated system provides rapid, accurate, and reliable measurements for scoliosis diagnosis, which could improve clinical workflow efficiency and guide scoliosis treatment. The level of evidence of this study. Level 3.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iiiiiuy完成签到,获得积分10
刚刚
wjh完成签到,获得积分10
1秒前
写作中关注了科研通微信公众号
1秒前
mirror完成签到,获得积分10
2秒前
哎嘿发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
sugar完成签到,获得积分10
3秒前
解惑大师发布了新的文献求助10
3秒前
3秒前
4秒前
跳跃的冷卉完成签到 ,获得积分10
4秒前
学术白银完成签到,获得积分10
4秒前
科研通AI6应助孙凯欣采纳,获得10
4秒前
casaboy完成签到,获得积分10
4秒前
一一2完成签到,获得积分10
4秒前
Jasper应助123采纳,获得10
4秒前
4秒前
希望天下0贩的0应助dbhfdgsh采纳,获得10
5秒前
5秒前
cheese发布了新的文献求助10
5秒前
5秒前
5秒前
淡淡土豆应助hw采纳,获得10
6秒前
淡淡土豆应助天道酬勤采纳,获得10
6秒前
纤指细轻捻完成签到,获得积分10
6秒前
6秒前
shelley完成签到,获得积分10
6秒前
魁梧的火龙果完成签到,获得积分10
6秒前
阳光的晓槐完成签到,获得积分10
6秒前
Echo发布了新的文献求助10
7秒前
7秒前
7秒前
xqing完成签到,获得积分10
7秒前
生椰拿铁完成签到 ,获得积分10
7秒前
July完成签到,获得积分10
8秒前
8秒前
yys发布了新的文献求助10
8秒前
顾矜应助小于号采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516814
求助须知:如何正确求助?哪些是违规求助? 4609871
关于积分的说明 14518264
捐赠科研通 4546672
什么是DOI,文献DOI怎么找? 2491314
邀请新用户注册赠送积分活动 1473067
关于科研通互助平台的介绍 1444924