Predicting busulfan exposure in patients undergoing hematopoietic stem cell transplantation using machine learning techniques

医学 布苏尔班 造血干细胞移植 移植 干细胞 造血细胞 造血 造血干细胞 肿瘤科 内科学 药理学 生物 遗传学
作者
Dandan Li,Jingtong Zhao,Baohua Xu,You Zheng,Maobai Liu,Huiping Huang,Song Han,Xuemei Wu
出处
期刊:Expert Review of Clinical Pharmacology [Taylor & Francis]
卷期号:16 (8): 751-761 被引量:4
标识
DOI:10.1080/17512433.2023.2226866
摘要

This study aimed to establish an optimal model to predict the busulfan (BU) area under the curve at steady state (AUCss) by using machine learning (ML).Seventy-nine adult patients (age ≥18 years) who received BU intravenously and underwent therapeutic drug monitoring from 2013 to 2021 at Fujian Medical University Union Hospital were enrolled in this retrospective study. The whole dataset was divided into a training group and test group at the ratio of 8:2. BU AUCss were considered as the target variable. Nine different ML algorithms and one population pharmacokinetic (pop PK) model were developed and validated, and their predictive performance was compared.All ML models were superior to the pop PK model (R2 = 0.751, MSE = 0.722, 14 and RMSE = 0.830) in model fitting and had better predictive accuracy. The ML model of BU AUCss established through support vector regression (SVR) and gradient boosted regression trees (GBRT) had the best predictive ability (R2 = 0.953 and 0.953, MSE = 0.323 and 0.326, and RMSE = 0.423 and 0.425).All the ML models can potentially be used to estimate BU AUCss with the aim of facilitating rational use of BU on the individualized level, especially models built by SVR and GBRT algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miracle完成签到,获得积分10
刚刚
2秒前
梦月完成签到,获得积分10
2秒前
落寞凌波发布了新的文献求助10
3秒前
lys完成签到,获得积分10
4秒前
Zzzz完成签到,获得积分10
5秒前
6秒前
8秒前
8秒前
ding应助ran采纳,获得10
8秒前
科研通AI5应助刘小乐采纳,获得10
8秒前
9秒前
棠真发布了新的文献求助10
10秒前
linxi完成签到,获得积分10
11秒前
13秒前
juanlin2011完成签到,获得积分10
13秒前
阿六完成签到,获得积分10
13秒前
yueming完成签到,获得积分20
14秒前
bobo完成签到 ,获得积分10
14秒前
善学以致用应助落寞凌波采纳,获得10
15秒前
15秒前
醉熏的天薇完成签到,获得积分10
15秒前
baolong发布了新的文献求助10
15秒前
JIANYOUFU发布了新的文献求助10
18秒前
懒回顾发布了新的文献求助10
19秒前
19秒前
所所应助不爱吃鱼的猫采纳,获得10
20秒前
黄任行发布了新的文献求助10
20秒前
科研通AI5应助yueming采纳,获得10
20秒前
21秒前
超帅的灭龙完成签到,获得积分10
22秒前
25秒前
山柏先生完成签到,获得积分10
25秒前
黄任行完成签到,获得积分10
25秒前
25秒前
27秒前
ran发布了新的文献求助10
28秒前
29秒前
幼稚发布了新的文献求助10
30秒前
30秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4088316
求助须知:如何正确求助?哪些是违规求助? 3627091
关于积分的说明 11500857
捐赠科研通 3339826
什么是DOI,文献DOI怎么找? 1836127
邀请新用户注册赠送积分活动 904253
科研通“疑难数据库(出版商)”最低求助积分说明 822156