Disease Detection of Solanaceous Crops Using Deep Learning for Robot Vision

人工智能 作物 卷积神经网络 计算机科学 农业工程 机器人 机器视觉 深度学习 模式识别(心理学) 农学 生物 工程类
作者
Atinia Hidayah,Syafeeza Ahmad Radzi,Norazlina Abdul Razak,Wira Hidayat Mohd Saad,Yong Chuan Wong,Assia Naja
出处
期刊:Journal of Robotics and Control (JRC) [Universitas Muhammadiyah Yogyakarta]
卷期号:3 (6): 790-799 被引量:1
标识
DOI:10.18196/jrc.v3i6.15948
摘要

Traditionally, the farmers manage the crops from the early growth stage until the mature harvest stage by manually identifying and monitoring plant diseases, nutrient deficiencies, controlled irrigation, and controlled fertilizers and pesticides. Even the farmers have difficulty detecting crop diseases using their naked eyes due to several similar crop diseases. Identifying the correct diseases is crucial since it can improve the quality and quantity of crop production. With the advent of Artificial Intelligence (AI) technology, all crop-managing tasks can be automated using a robot that mimics a farmer's ability. However, designing a robot with human capability, especially in detecting the crop's diseases in real-time, is another challenge to consider. Other research works are focusing on improving the mean average precision and the best result reported so far is 93% of mean Average Precision (mAP) by YOLOv5. This paper focuses on object detection of the Convolutional Neural Network (CNN) architecture-based to detect the disease of solanaceous crops for robot vision. This study's contribution involved reporting the developmental specifics and a suggested solution for issues that appear along with the conducted study. In addition, the output of this study is expected to become the algorithm of the robot's vision. This study uses images of four crops (tomato, potato, eggplant, and pepper), including 23 classes of healthy and diseased crops infected on the leaf and fruits. The dataset utilized combines the public dataset (PlantVillage) and self-collected samples. The total dataset of all 23 classes is 16580 images divided into three parts: training set, validation set, and testing set. The dataset used for training is 88% of the total dataset (15000 images), 8% of the dataset performed a validation process (1400 images), and the rest of the 4% dataset is for the test process (699 images). The performances of YOLOv5 were more robust in terms of 94.2% mAP, and the speed was slightly faster than Scaled-YOLOv4. This object detection-based approach has proven to be a promising solution in efficiently detecting crop disease in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
nanchuangjiao完成签到,获得积分10
刚刚
勤劳元瑶完成签到,获得积分10
刚刚
哇哈哈哈完成签到,获得积分10
刚刚
1秒前
清脆南蕾完成签到,获得积分10
1秒前
淡水痕完成签到,获得积分10
1秒前
我只是个丙酮酸完成签到,获得积分10
2秒前
小脸红扑扑完成签到 ,获得积分10
2秒前
故里完成签到,获得积分10
2秒前
2秒前
xmhxpz完成签到,获得积分10
3秒前
wl发布了新的文献求助30
4秒前
baihe发布了新的文献求助10
5秒前
5秒前
周周完成签到 ,获得积分10
6秒前
宇文青寒完成签到,获得积分10
7秒前
玻璃外的世界完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
llk完成签到,获得积分10
8秒前
大号安全蛋完成签到,获得积分10
8秒前
斯文败类应助ganjqly采纳,获得10
8秒前
科研通AI5应助XXXX采纳,获得10
8秒前
方又亦完成签到,获得积分10
9秒前
天天快乐应助JIANG0710采纳,获得10
9秒前
9秒前
李小鑫吖发布了新的文献求助10
10秒前
10秒前
痴情的茈发布了新的文献求助10
10秒前
蓝色如你如我完成签到,获得积分10
11秒前
11秒前
12秒前
漠尘完成签到,获得积分10
12秒前
梅花鹿完成签到,获得积分10
13秒前
krystal完成签到,获得积分10
13秒前
清爽老九应助qyy采纳,获得30
13秒前
慕青应助qyy采纳,获得10
13秒前
feng1235应助qyy采纳,获得10
13秒前
核桃应助qyy采纳,获得10
13秒前
清爽老九应助qyy采纳,获得30
13秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4243531
求助须知:如何正确求助?哪些是违规求助? 3776954
关于积分的说明 11857511
捐赠科研通 3431313
什么是DOI,文献DOI怎么找? 1883075
邀请新用户注册赠送积分活动 934999
科研通“疑难数据库(出版商)”最低求助积分说明 841509