Predicting physical properties of oxygenated gasoline and diesel range fuels using machine learning

汽油 粘度 柴油 燃烧 人工神经网络 工作(物理) 石油产品 工艺工程 热力学 材料科学 化学 有机化学 石油 计算机科学 工程类 机器学习 复合材料 物理
作者
Hussain A. AlNazr,Nabeel Ahmad,Usama Ahmed,Balaji Mohan,Abdul Gani Abdul Jameel
出处
期刊:alexandria engineering journal [Elsevier]
卷期号:76: 193-219 被引量:21
标识
DOI:10.1016/j.aej.2023.06.037
摘要

Understanding the physical properties of distillate petroleum fuels like gasoline and diesel is very critical to ensure the normal operation of internal combustion (IC) engines with regards to processes like spray atomization, heating, evaporation etc. Two of most important physical properties are density and viscosity. Many factors such as molecular structure, molecular weight, temperature etc. effect the physical properties of the fuel. The present work deals with the development of a machine learning model for predicting the density and viscosity of petroleum fuels containing oxygenated chemical classes such as alcohols, esters, ketones and aldehydes. The model was developed using the molecular structure of the compounds expressed in the form of functional groups as inputs. The density and viscosity of 164 pure compounds spanning various chemical families and 14 blends of known compositions was collected from the literature. An artificial neural network model (ANN) for predicting density and viscosity was developed using the neural network tool in Matlab. Each of the ANN model was tested against 15% of the data and the results show that the models were able to successfully predict the density and viscosity of the unseen data points to a good accuracy. A regression coefficient of 0.99 (for density) and 0.98 (for viscosity) was obtained for the test set. The developed models can be used to predict and screen the density and viscosity of real petroleum fuels containing drop in oxygenated bio-fuels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Tina完成签到,获得积分10
1秒前
1秒前
师震铎发布了新的文献求助10
2秒前
2秒前
Puffkten发布了新的文献求助10
2秒前
3秒前
舒适访彤发布了新的文献求助10
4秒前
淡定竺发布了新的文献求助10
4秒前
4秒前
Nuyoah完成签到 ,获得积分10
5秒前
5秒前
jackzzs完成签到,获得积分10
5秒前
一天完成签到 ,获得积分10
6秒前
12完成签到,获得积分10
6秒前
zywzyw完成签到,获得积分10
6秒前
7秒前
fighting完成签到,获得积分10
8秒前
999完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
dovehanguoge发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
自信书文发布了新的文献求助10
9秒前
Jasper应助苏苏采纳,获得10
10秒前
JamesPei应助俭朴晓凡采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
orixero应助刘四毛采纳,获得10
12秒前
13秒前
舒适访彤完成签到,获得积分20
13秒前
14秒前
Puffkten发布了新的文献求助10
14秒前
所所应助十九采纳,获得10
15秒前
Yik发布了新的文献求助10
16秒前
TiAmo发布了新的文献求助10
16秒前
彭于晏应助舒适访彤采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553450
求助须知:如何正确求助?哪些是违规求助? 4637983
关于积分的说明 14651924
捐赠科研通 4579900
什么是DOI,文献DOI怎么找? 2511951
邀请新用户注册赠送积分活动 1486817
关于科研通互助平台的介绍 1457747