纤锌矿晶体结构
铁电性
微电子
材料科学
极化(电化学)
扫描透射电子显微镜
光电子学
半导体
原子单位
数码产品
纳米技术
工程物理
透射电子显微镜
电介质
化学
电气工程
物理
锌
工程类
物理化学
冶金
量子力学
作者
Sebastián Calderón,John Hayden,Steven M. Baksa,William Tzou,Susan Trolier‐McKinstry,Ismaïla Dabo,Jon‐Paul Maria,Elizabeth C. Dickey
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2023-06-08
卷期号:380 (6649): 1034-1038
被引量:58
标识
DOI:10.1126/science.adh7670
摘要
Ferroelectric wurtzites have the potential to revolutionize modern microelectronics because they are easily integrated with multiple mainstream semiconductor platforms. However, the electric fields required to reverse their polarization direction and unlock electronic and optical functions need substantial reduction for operational compatibility with complementary metal-oxide semiconductor (CMOS) electronics. To understand this process, we observed and quantified real-time polarization switching of a representative ferroelectric wurtzite (Al0.94B0.06N) at the atomic scale with scanning transmission electron microscopy. The analysis revealed a polarization reversal model in which puckered aluminum/boron nitride rings in the wurtzite basal planes gradually flatten and adopt a transient nonpolar geometry. Independent first-principles simulations reveal the details and energetics of the reversal process through an antipolar phase. This model and local mechanistic understanding are a critical initial step for property engineering efforts in this emerging material class.
科研通智能强力驱动
Strongly Powered by AbleSci AI