Artificial Intelligence in Minimally Invasive Adrenalectomy: Using Deep Learning to Identify the Left Adrenal Vein

人工智能 医学 肾上腺切除术 放射科 外科 计算机科学
作者
Berke Şengün,Yalın İşcan,G. Ozbulak,Nida Kumbasar,Emre Eğriboz,İsmail Cem Sormaz,Nihat Aksakal,Sencer M. Deniz,Mehmet Haklıdır,Fatih Tunca,Yasemin Giles Şenyürek
出处
期刊:Surgical laparoscopy, endoscopy & percutaneous techniques [Lippincott Williams & Wilkins]
卷期号:33 (4): 327-331 被引量:5
标识
DOI:10.1097/sle.0000000000001185
摘要

Background: Minimally invasive adrenalectomy is the main surgical treatment option for the resection of adrenal masses. Recognition and ligation of adrenal veins are critical parts of adrenal surgery. The utilization of artificial intelligence and deep learning algorithms to identify anatomic structures during laparoscopic and robot-assisted surgery can be used to provide real-time guidance. Methods: In this experimental feasibility study, intraoperative videos of patients who underwent minimally invasive transabdominal left adrenalectomy procedures between 2011 and 2022 in a tertiary endocrine referral center were retrospectively analyzed and used to develop an artificial intelligence model. Semantic segmentation of the left adrenal vein with deep learning was performed. To train a model, 50 random images per patient were captured during the identification and dissection of the left adrenal vein. A randomly selected 70% of data was used to train models while 15% for testing and 15% for validation with 3 efficient stage-wise feature pyramid networks (ESFPNet). Dice similarity coefficient (DSC) and intersection over union scores were used to evaluate segmentation accuracy. Results: A total of 40 videos were analyzed. Annotation of the left adrenal vein was performed in 2000 images. The segmentation network training on 1400 images was used to identify the left adrenal vein in 300 test images. The mean DSC and sensitivity for the highest scoring efficient stage-wise feature pyramid network B-2 network were 0.77 (±0.16 SD) and 0.82 (±0.15 SD), respectively, while the maximum DSC was 0.93, suggesting a successful prediction of anatomy. Conclusions: Deep learning algorithms can predict the left adrenal vein anatomy with high performance and can potentially be utilized to identify critical anatomy during adrenal surgery and provide real-time guidance in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助清河剑客采纳,获得10
刚刚
LVMIN发布了新的文献求助10
1秒前
海天使完成签到,获得积分10
1秒前
2秒前
帅气之双关注了科研通微信公众号
2秒前
sily科研发布了新的文献求助10
3秒前
4秒前
4秒前
tj完成签到,获得积分10
4秒前
科研小白完成签到 ,获得积分10
5秒前
tang完成签到,获得积分10
5秒前
5秒前
忆水发布了新的文献求助20
5秒前
5秒前
6秒前
xingxing完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
dandelion123完成签到,获得积分10
7秒前
8秒前
无花果应助孔凡悦采纳,获得10
8秒前
轻松乐巧发布了新的文献求助10
8秒前
朝俞完成签到,获得积分10
8秒前
阳光映秋发布了新的文献求助50
8秒前
标致绝音完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助20
9秒前
飞云发布了新的文献求助10
9秒前
MoonMonth发布了新的文献求助10
9秒前
9秒前
脑洞疼应助研友_LMg7PZ采纳,获得10
9秒前
LX发布了新的文献求助10
10秒前
10秒前
10秒前
山井寿发布了新的文献求助10
10秒前
夏沫完成签到,获得积分10
11秒前
CodeCraft应助支援未来采纳,获得10
11秒前
哈哈哈发布了新的文献求助10
11秒前
11秒前
whiscen发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884573
求助须知:如何正确求助?哪些是违规求助? 4169746
关于积分的说明 12939030
捐赠科研通 3930315
什么是DOI,文献DOI怎么找? 2156519
邀请新用户注册赠送积分活动 1174849
关于科研通互助平台的介绍 1079663