Artificial Intelligence in Minimally Invasive Adrenalectomy: Using Deep Learning to Identify the Left Adrenal Vein

人工智能 医学 肾上腺切除术 放射科 外科 计算机科学
作者
Berke Şengün,Yalın İşcan,G. Ozbulak,Nida Kumbasar,Emre Eğriboz,İsmail Cem Sormaz,Nihat Aksakal,Sencer M. Deniz,Mehmet Haklıdır,Fatih Tunca,Yasemin Giles Şenyürek
出处
期刊:Surgical laparoscopy, endoscopy & percutaneous techniques [Lippincott Williams & Wilkins]
卷期号:33 (4): 327-331 被引量:5
标识
DOI:10.1097/sle.0000000000001185
摘要

Background: Minimally invasive adrenalectomy is the main surgical treatment option for the resection of adrenal masses. Recognition and ligation of adrenal veins are critical parts of adrenal surgery. The utilization of artificial intelligence and deep learning algorithms to identify anatomic structures during laparoscopic and robot-assisted surgery can be used to provide real-time guidance. Methods: In this experimental feasibility study, intraoperative videos of patients who underwent minimally invasive transabdominal left adrenalectomy procedures between 2011 and 2022 in a tertiary endocrine referral center were retrospectively analyzed and used to develop an artificial intelligence model. Semantic segmentation of the left adrenal vein with deep learning was performed. To train a model, 50 random images per patient were captured during the identification and dissection of the left adrenal vein. A randomly selected 70% of data was used to train models while 15% for testing and 15% for validation with 3 efficient stage-wise feature pyramid networks (ESFPNet). Dice similarity coefficient (DSC) and intersection over union scores were used to evaluate segmentation accuracy. Results: A total of 40 videos were analyzed. Annotation of the left adrenal vein was performed in 2000 images. The segmentation network training on 1400 images was used to identify the left adrenal vein in 300 test images. The mean DSC and sensitivity for the highest scoring efficient stage-wise feature pyramid network B-2 network were 0.77 (±0.16 SD) and 0.82 (±0.15 SD), respectively, while the maximum DSC was 0.93, suggesting a successful prediction of anatomy. Conclusions: Deep learning algorithms can predict the left adrenal vein anatomy with high performance and can potentially be utilized to identify critical anatomy during adrenal surgery and provide real-time guidance in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青q完成签到,获得积分10
1秒前
李健应助l98916采纳,获得10
2秒前
CL完成签到,获得积分10
3秒前
最佳发布了新的文献求助10
3秒前
复杂数据线完成签到,获得积分10
4秒前
寒冷的寻菱完成签到,获得积分10
4秒前
无花果应助缥缈青烟采纳,获得10
5秒前
7秒前
8秒前
烟花应助俞安珊采纳,获得10
9秒前
青q发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
12秒前
研友_VZG7GZ应助zhang采纳,获得10
12秒前
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
孙燕应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
yydragen应助科研通管家采纳,获得30
13秒前
格局打开发布了新的文献求助10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
豆豆豆豆豆关注了科研通微信公众号
14秒前
守护星星发布了新的文献求助10
16秒前
javen发布了新的文献求助30
18秒前
史小菜应助复杂数据线采纳,获得20
18秒前
18秒前
guoxihan完成签到,获得积分10
19秒前
xxxxxxlp完成签到,获得积分10
20秒前
chenzuo完成签到,获得积分10
21秒前
smm完成签到 ,获得积分10
21秒前
文文应助杨舒采纳,获得10
22秒前
BBking完成签到,获得积分20
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4032424
求助须知:如何正确求助?哪些是违规求助? 3571005
关于积分的说明 11363157
捐赠科研通 3301345
什么是DOI,文献DOI怎么找? 1817377
邀请新用户注册赠送积分活动 891549
科研通“疑难数据库(出版商)”最低求助积分说明 814300