TC-Fuse: A Transformers Fusing CNNs Network for Medical Image Segmentation

保险丝(电气) 人工智能 计算机视觉 变压器 计算机科学 分割 模式识别(心理学) 图像分割 工程类 电气工程 电压
作者
Peng Geng,Ji Lu,Ying Zhang,Simin Ma,Zhanzhong Tang,Jianhua Liu
出处
期刊:Cmes-computer Modeling in Engineering & Sciences [Tech Science Press]
卷期号:137 (2): 2001-2023 被引量:2
标识
DOI:10.32604/cmes.2023.027127
摘要

In medical image segmentation task, convolutional neural networks (CNNs) are difficult to capture long-range dependencies, but transformers can model the long-range dependencies effectively.However, transformers have a flexible structure and seldom assume the structural bias of input data, so it is difficult for transformers to learn positional encoding of the medical images when using fewer images for training.To solve these problems, a dual branch structure is proposed.In one branch, Mix-Feed-Forward Network (Mix-FFN) and axial attention are adopted to capture long-range dependencies and keep the translation invariance of the model.Mix-FFN whose depth-wise convolutions can provide position information is better than ordinary positional encoding.In the other branch, traditional convolutional neural networks (CNNs) are used to extract different features of fewer medical images.In addition, the attention fusion module BiFusion is used to effectively integrate the information from the CNN branch and Transformer branch, and the fused features can effectively capture the global and local context of the current spatial resolution.On the public standard datasets Gland Segmentation (GlaS), Colorectal adenocarcinoma gland (CRAG) and COVID-19 CT Images Segmentation, the F1-score, Intersection over Union (IoU) and parameters of the proposed TC-Fuse are superior to those by Axial Attention U-Net, U-Net, Medical Transformer and other methods.And F1-score increased respectively by 2.99%, 3.42% and 3.95% compared with Medical Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shangxinyu完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
共享精神应助iwersonshmtu采纳,获得10
3秒前
交出小狗完成签到,获得积分10
3秒前
4秒前
Gu0F1完成签到 ,获得积分10
5秒前
6秒前
冷傲的冰绿完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
吐丝麵包发布了新的文献求助10
9秒前
10秒前
蝉鸣完成签到,获得积分10
11秒前
萱萱完成签到,获得积分10
11秒前
12秒前
核桃发布了新的文献求助10
12秒前
13秒前
乐观的雁兰完成签到,获得积分10
13秒前
iNk应助坚定迎天采纳,获得20
13秒前
nihao完成签到,获得积分10
13秒前
14秒前
小羊发布了新的文献求助30
14秒前
萱萱发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
斯文败类应助枫叶的脚步采纳,获得10
18秒前
18秒前
jhlz5879完成签到,获得积分0
19秒前
852应助枫林醉采纳,获得10
22秒前
玖东发布了新的文献求助10
23秒前
23秒前
24秒前
allen7u完成签到,获得积分10
25秒前
小事发布了新的文献求助50
26秒前
27秒前
28秒前
FashionBoy应助微微采纳,获得10
28秒前
玖东完成签到,获得积分10
29秒前
175完成签到,获得积分20
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212653
求助须知:如何正确求助?哪些是违规求助? 3746898
关于积分的说明 11789305
捐赠科研通 3414479
什么是DOI,文献DOI怎么找? 1873737
邀请新用户注册赠送积分活动 928097
科研通“疑难数据库(出版商)”最低求助积分说明 837403