Development of machine learning models to predict lymph node metastases in major salivary gland cancers

医学 淋巴结 预测值 回顾性队列研究 随机森林 内科学 肿瘤科 人工智能 机器学习 计算机科学
作者
Andrea Costantino,Luca Canali,Bianca Maria Festa,Se‐Heon Kim,Giuseppe Spriano,Armando De Virgilio
出处
期刊:Ejso [Elsevier BV]
卷期号:49 (9): 106965-106965 被引量:6
标识
DOI:10.1016/j.ejso.2023.06.017
摘要

Indications for elective treatment of the neck in patients with major salivary gland cancers are still debated. Our purpose was to develop a machine learning (ML) model able to generate a predictive algorithm to identify lymph node metastases (LNM) in patients with major salivary gland cancer (SGC).A Retrospective study was performed with data obtained from the Surveillance, Epidemiology, and End Results (SEER) program. Patients diagnosed with a major SGC between 1988 and 2019 were included. Two 2-class supervised ML decision models (random forest, RF; extreme gradient boosting, XGB) were used to predict the presence of LNM, implementing thirteen demographics and clinical variables collected from the SEER database. A permutation feature importance (PFI) score was computed using the testing dataset to identify the most important variables used in model prediction.A total of 10 350 patients (males: 52%; mean age: 59.9 ± 17.2 years) were included in the study. The RF and the XGB prediction models showed an overall accuracy of 0.68. Both models showed a high specificity (RF: 0.90; XGB: 0.83) and low sensitivity (RF: 0.27; XGB: 0.38) in identifying LNM. According, a high negative predictive value (RF: 0.70; XGB: 0.72) and a low positive predictive value (RF: 0.58; XGB: 0.56) were measured. T classification and tumor size were the most important features in the construction of the prediction algorithms.Classification performance of the ML algorithms showed high specificity and negative predictive value that allow to preoperatively identify patients with a lower risk of LNM.Based on data from the Surveillance, Epidemiology, and End Results (SEER) program, our study showed that machine learning algorithms owns a high specificity and negative predictive value, allowing to preoperatively identify patients with a lower risk of lymph node metastasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
阿阳完成签到,获得积分10
3秒前
今晚吃什么呢完成签到,获得积分10
3秒前
嫩牛五方发布了新的文献求助10
4秒前
楚辞发布了新的文献求助10
4秒前
张zhang发布了新的文献求助10
5秒前
Ziyi_Xu完成签到,获得积分10
5秒前
7秒前
Ricardo完成签到,获得积分10
8秒前
Orange应助今晚吃什么呢采纳,获得10
8秒前
AirJia完成签到,获得积分10
8秒前
10秒前
承影完成签到,获得积分10
10秒前
小二郎应助嫩牛五方采纳,获得10
11秒前
11秒前
可爱的函函应助errui采纳,获得10
11秒前
12秒前
XY给XY的求助进行了留言
12秒前
Yz_完成签到,获得积分20
13秒前
随便起个名完成签到,获得积分10
13秒前
UPUP0707完成签到,获得积分10
14秒前
科研通AI5应助柔弱如风采纳,获得10
14秒前
14秒前
卡皮巴拉发布了新的文献求助10
15秒前
珂儿完成签到,获得积分10
16秒前
su发布了新的文献求助10
17秒前
17秒前
18秒前
hhhbbb发布了新的文献求助20
19秒前
k123456应助科研通管家采纳,获得10
19秒前
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
19秒前
卡卡西应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799888
求助须知:如何正确求助?哪些是违规求助? 3345183
关于积分的说明 10324169
捐赠科研通 3061781
什么是DOI,文献DOI怎么找? 1680528
邀请新用户注册赠送积分活动 807129
科研通“疑难数据库(出版商)”最低求助积分说明 763462