Nonlinear Aeroelastic Prediction in Transonic Buffeting Flow by Deep Neural Network

气动弹性 跨音速 空气动力学 翼型 计算流体力学 非线性系统 空气动力 计算机科学 控制理论(社会学) 机械 结构工程 物理 工程类 控制(管理) 量子力学 人工智能
作者
Zihao Dou,Chuanqiang Gao,Weiwei Zhang,Yang Tao
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (6): 2412-2429 被引量:15
标识
DOI:10.2514/1.j061946
摘要

Transonic buffet is an aerodynamic phenomenon of self-sustained shock oscillations. The aeroelastic problem caused by it is very complex, including two different dynamic modes: forced vibration and frequency lock-in. The vibration of the structure has a negative influence on the fatigue life of the aircraft. Especially in the region of frequency lock-in, the limit cycle oscillations occur due to the instability of the structural mode. Researchers have accurately predicted the region of frequency lock-in in transonic buffet and have clarified its mechanism by using a linear aerodynamic model. However, the nonlinear aeroelastic modeling and prediction of the transonic buffet remain to be solved. The long short-term memory (LSTM) deep neural network is suitable for predicting the time-delayed effects of unsteady aerodynamics. And it has achieved remarkable results in sequential data modeling. In the present work, a nonlinear model is developed for the aeroelastic system with NACA0012 airfoil in transonic buffeting flow and validated with the coupled computational fluid dynamics/computational structural dynamics (CFD/CSD) simulation. First, the data set and the loss function are specially designed. Then, the reduced-order model (ROM) based on the LSTM of the flow is built by using unsteady Reynolds-averaged Navier–Stokes computations data in a post-buffet state. By coupling the ROM and the single degree-of-freedom equation for the pitching angle, the nonlinear aeroelastic model is finally produced. The results show that the phenomenon of frequency lock-in and the self-sustained buffeting aerodynamics are precisely reconstructed. And the model has a strong generalization ability and can reproduce complex vibrations caused by competition between different modes. In short, the model can replace the CFD/CSD method in the current case with high efficiency and accuracy. The method can be used for modeling and prediction of other various complex aeroelastic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情香氛完成签到 ,获得积分20
1秒前
wu发布了新的文献求助10
1秒前
1秒前
不爱吃饭发布了新的文献求助10
2秒前
Avae发布了新的文献求助30
2秒前
烤肠发布了新的文献求助10
2秒前
dizzy完成签到,获得积分10
3秒前
3秒前
七言驳回了Ava应助
3秒前
runaway完成签到,获得积分10
4秒前
星辰大海应助Xiaoguo采纳,获得10
4秒前
鹅鹅鹅发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
rhsfdfb完成签到,获得积分10
6秒前
6秒前
Ross发布了新的文献求助10
6秒前
我是老大应助烤肠采纳,获得10
6秒前
小白在努力完成签到 ,获得积分10
7秒前
7秒前
7秒前
喝醉了的李白完成签到 ,获得积分10
7秒前
情怀应助XhuaQye采纳,获得10
7秒前
8秒前
菲菲呀完成签到,获得积分10
8秒前
丸子完成签到,获得积分10
8秒前
慕青应助Auroar采纳,获得10
9秒前
ZZZ好事郑在进行时完成签到,获得积分10
9秒前
桐桐应助SIMON采纳,获得10
9秒前
我是老大应助Ashore采纳,获得10
10秒前
10秒前
明亮的冬日完成签到,获得积分10
10秒前
小李发布了新的文献求助10
11秒前
之前发布了新的文献求助10
11秒前
Vicky完成签到,获得积分10
11秒前
Eddy发布了新的文献求助10
11秒前
11秒前
11秒前
Ikejima发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070552
求助须知:如何正确求助?哪些是违规求助? 4291675
关于积分的说明 13371209
捐赠科研通 4111892
什么是DOI,文献DOI怎么找? 2251771
邀请新用户注册赠送积分活动 1256853
关于科研通互助平台的介绍 1189497