Artificial intelligence process control: deep reinforcement learning for Ga2O3 wafer production

薄脆饼 材料科学 工艺工程 计算机科学 过程控制 金属有机气相外延 纳米技术 人工智能 过程(计算) 外延 工程类 操作系统 图层(电子)
作者
Sarah Constantin,Matthew Putman,Valerie Bordelanne
标识
DOI:10.1117/12.2668706
摘要

Process improvement for the manufacture of effective high performance gallium oxide (Ga2O3) based semiconductor devices is imperative in consolidating Ga2O3 as a singularly promising material for cost effective, mass-producible, and robust manufacturing. Other wide bandgap silicon alternatives (i.e., SiC and GaN) are impeded by high costs and complicated, time-consuming adjustments. Beginning with a bandgap of 4.7eV, Ga2O3 offers an unparalleled solution when growth parameters are tuned and controlled using deep reinforcement learning agents. Ga2O3 wafer production employs (non-exclusively) the scalable and cost-effective Czochralski method for ingot growth and MOCVD process for epitaxy growth, making it a viable candidate for high volume commercial radiofrequency device manufacture. As crystal quality and electron transport depend on reactor temperature, vertical gas and precursors flows, chamber pressure, and a host of kinetic parameters during growth, it follows that the configuration space for Ga2O3 deposition is expansive and costly to explore. Enhancing growth rate of Ga2O3 films without compromising crystal quality can be accomplished through implementing insights offered by ancillary deep learning models. Artificial intelligence techniques that take programmed reactor settings, sensor-read environmental conditions, resulting crystallographic defectivity, and overall outgoing quality as inputs can infer processing improvements upstream using neural networks trained by skilled engineers. My stipulations call for a hardware accelerated deep learning controller (DLC) that digests the multimedia output of reactors, MOCVD systems, and metrology tools to optimize Ga2O3 crystal quality and ultimately increase die yields, reduce waste, accelerate product development, decrease time to market, and eliminate need for labor-exhaustive testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳马里奥应助shaobing62采纳,获得10
刚刚
刚刚
陈帅洲发布了新的文献求助10
刚刚
燕子完成签到,获得积分10
刚刚
刚刚
共享精神应助灰底爆米花采纳,获得10
1秒前
毕聪健发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
Hommand_藏山完成签到,获得积分10
3秒前
星河关注了科研通微信公众号
3秒前
AliHamid完成签到,获得积分20
3秒前
张大大发布了新的文献求助10
4秒前
此去经年发布了新的文献求助30
4秒前
4秒前
6秒前
快乐市民小张张完成签到 ,获得积分10
6秒前
ankh发布了新的文献求助10
6秒前
哈哈哈哈发布了新的文献求助10
7秒前
没朴子完成签到,获得积分10
8秒前
8秒前
斯佳丽奥哈拉完成签到,获得积分10
9秒前
李健应助米十二采纳,获得10
9秒前
科研通AI5应助PSQ采纳,获得10
9秒前
9秒前
科研通AI2S应助友好访琴采纳,获得10
10秒前
11秒前
开心的BILL发布了新的文献求助10
12秒前
11111发布了新的文献求助10
12秒前
12秒前
斯文败类应助moby采纳,获得50
12秒前
13秒前
星河发布了新的文献求助10
15秒前
淡定访琴发布了新的文献求助10
15秒前
小马发布了新的文献求助10
16秒前
Zhenli_Li完成签到,获得积分10
16秒前
wakanda666关注了科研通微信公众号
16秒前
17秒前
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4180674
求助须知:如何正确求助?哪些是违规求助? 3716196
关于积分的说明 11715320
捐赠科研通 3396698
什么是DOI,文献DOI怎么找? 1863647
邀请新用户注册赠送积分活动 921883
科研通“疑难数据库(出版商)”最低求助积分说明 833515