已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Model compression and privacy preserving framework for federated learning

计算机科学 上传 瓶颈 加密 同态加密 无线网络 MNIST数据库 无线 个性化 数据压缩 人工神经网络 数据挖掘 计算机网络 人工智能 分布式计算 机器学习 嵌入式系统 电信 万维网 操作系统
作者
Xi Zhu,Junbo Wang,Wuhui Chen,Kento Sato
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:140: 376-389 被引量:5
标识
DOI:10.1016/j.future.2022.10.026
摘要

Federated learning (FL) as a collaborative learning paradigm has attracted extensive attention due to its characteristic of privacy preserving, in which the clients train a shared neural network model collaboratively by their local dataset and upload their model parameters merely instead of original data by wireless network in the whole training process. Because FL reduces transmission significantly, it can further meets the efficiency and security of the next generation wireless system. Although FL has reduced the size of information that needs to be transmitted, the update of model parameters still suffers from privacy leakage and communication bottleneck especially in wireless networks. To address the problem of privacy and communication, this paper proposes a model compression based FL framework. Firstly, the designed model compression framework provides effective support for efficient and secure model parameters updating in FL while keeping the personalization of all clients. Then, the proposed perturbed model compression method can further reduce the size of the model and protect the privacy of the model without sacrificing much accuracy. Besides, it also facilitates the simultaneous execution of decryption and decompressing operations by reconstruction algorithm on encrypted and compressed model parameters which is obtained by the proposed perturbed model compression method. Finally, the illustrative results demonstrate that the proposed model compression based FL framework can significantly reduce the number of model parameters for uploading with a strong privacy preservation property. For example, when the compression ratio is 0.0953 (i.e., only 9.53% of the parameters are uploaded), the accuracy of MNIST achieves 97% while the accuracy without compression is 98%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111完成签到 ,获得积分10
1秒前
zpq发布了新的文献求助10
2秒前
Hoshiiii完成签到,获得积分10
2秒前
4秒前
杯装冰块发布了新的文献求助30
6秒前
华仔应助默默采纳,获得10
6秒前
李故完成签到 ,获得积分10
8秒前
谦让的青亦完成签到,获得积分10
9秒前
10秒前
无聊的香芦完成签到,获得积分10
10秒前
认真的彩虹完成签到,获得积分10
10秒前
湿叭叭完成签到,获得积分10
10秒前
11秒前
上官若男应助phil采纳,获得10
12秒前
隐形曼青应助晓生采纳,获得10
13秒前
14秒前
靓丽冬灵应助牧州东语榕采纳,获得10
15秒前
Lignin应助康康采纳,获得10
16秒前
16秒前
麦克完成签到,获得积分10
16秒前
祭酒发布了新的文献求助10
17秒前
green发布了新的文献求助10
18秒前
三七完成签到,获得积分10
18秒前
18秒前
guoze完成签到,获得积分10
19秒前
耳机单蹦应助一丁雨采纳,获得10
20秒前
楚舜华发布了新的文献求助10
21秒前
22秒前
无敌大忽悠完成签到,获得积分10
24秒前
green完成签到,获得积分10
25秒前
朝文奕发布了新的文献求助10
25秒前
默默发布了新的文献求助10
27秒前
28秒前
eric888应助科研通管家采纳,获得150
28秒前
Hello应助科研通管家采纳,获得10
28秒前
司空豁应助科研通管家采纳,获得10
28秒前
打打应助科研通管家采纳,获得30
28秒前
柯一一应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Encyclopedia of Mathematical Physics 2nd Edition 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3924167
求助须知:如何正确求助?哪些是违规求助? 3468934
关于积分的说明 10954281
捐赠科研通 3198335
什么是DOI,文献DOI怎么找? 1767035
邀请新用户注册赠送积分活动 856635
科研通“疑难数据库(出版商)”最低求助积分说明 795541