耳蜗背核
耳蜗核
代谢组
代谢组学
核心
生物
代谢途径
神经科学
化学
生物化学
细胞生物学
新陈代谢
生物信息学
作者
Jun Tan,Yue Li,Dekun Gao,Lianhua Sun,Qiang Song,Jun Yang
标识
DOI:10.1016/j.heares.2022.108645
摘要
The cochlear nucleus receives numerous inputs from auditory and nonauditory systems. This extensive innervation of the cochlear nucleus is involved in sound source localization and the integration of auditory signals with other sensory modalities. The dorsal cochlear nucleus may also have an important role in tinnitus. Although its gross anatomy and function have been extensively studied, the metabolome of the cochlear nucleus remains poorly understood, particularly at different stages of auditory maturity. Here, we present a protocol for untargeted metabolomics analysis of the rat cochlear nucleus, then discuss differences in the metabolome of the rat cochlear nucleus between postnatal day (PD) 14 (hearing onset) and PD60 (hearing maturation). Cochlear nucleus samples collected from rats at PD14 or PD60 were analyzed by liquid chromatography-tandem mass spectrometry (LCMS). In total, 344 metabolites were identified. Principal component analysis and orthogonal partial least-square discriminant analysis showed that the metabolic profiles at these two stages had distinct distribution patterns. Moreover, 91 significantly differential metabolites (62 upregulated and 29 downregulated) were identified at PD60 vs. PD14. N-acetylaspartylglutamic acid (NAAG), γ-aminobutyric acid (GABA), taurine, adenosine monophosphate (AMP), and choline were significantly upregulated at PD60. Pathway enrichment analysis suggested that alanine, aspartate, and glutamate metabolism; glycine, serine, and threonine metabolism; the mammalian target of rapamycin (mTOR) signaling pathway; and the AMP-activated protein kinase (AMPK) signaling pathway may be involved in key developmental events during maturation of the cochlear nucleus. Taken together, the metabolic profiles identified in this study could lead to the identification and understanding of specific key biomarkers and metabolic pathways involved in the maturation of hearing. Moreover, LC-MS-based metabolomics provides an alternative approach for the characterization of auditory maturation and auditory diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI