已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles

一般化 电池(电) 计算机科学 人工神经网络 人工智能 卷积神经网络 预处理器 锂离子电池 深度学习 集合(抽象数据类型) 数据集 可靠性工程 工程类 数学 物理 数学分析 功率(物理) 量子力学 程序设计语言
作者
Dinghong Chen,Weige Zhang,Caiping Zhang,Bingxiang Sun,Xinwei Cong,Shaoyuan Wei,Jiuchun Jiang
出处
期刊:Applied Energy [Elsevier]
卷期号:327: 120114-120114 被引量:44
标识
DOI:10.1016/j.apenergy.2022.120114
摘要

Life prediction of lithium-ion batteries is vital for battery system utilization and maintenance. Especially, the accurate life prediction in early cycles can accelerate the battery design, production, and optimization. However, diverse aging mechanisms, various cycle profiles, and negligible capacity degradation in the early cycling stages pose significant challenges. This paper proposes a novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles, where the battery lifetime model is formulated by a two-dimensional and one-dimensional parallel hybrid neural network. Firstly, the input data is constructed by a five-step streamlined preprocessing approach. Secondly, two-dimensional and one-dimensional convolutional neural networks are respectively used to extract the underlying associations between the data. Then, the long short-term memory network is employed to learn the time-sequential relationships among the extracted features. Ultimately, the diagnosis for the current cycle life and the prognostic on the remaining useful life of the battery are performed. A well-known dataset is utilized to validate the accuracy and generalization performance of the proposed method. Comparison results with other methods show that the proposed model has strong generalization capability. For the test set composed of data from 31 cells under 25 different cycle profiles, its mean absolute percentage error in early lifetime prediction and remaining useful life prediction is merely 1.47% and 2.85%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxwyj发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
魏佳奇完成签到 ,获得积分10
3秒前
4秒前
小赖想睡觉完成签到,获得积分10
5秒前
RONG完成签到 ,获得积分10
6秒前
冷静的访天完成签到 ,获得积分10
9秒前
浮游应助syh5527029采纳,获得30
10秒前
10秒前
14秒前
16秒前
云朵完成签到,获得积分10
17秒前
Emma发布了新的文献求助10
17秒前
17秒前
17秒前
寂寞的尔丝完成签到 ,获得积分10
17秒前
24秒前
小詹同学完成签到 ,获得积分10
25秒前
鹤川完成签到 ,获得积分10
27秒前
27秒前
tjnksy完成签到,获得积分10
29秒前
BowieHuang应助syh5527029采纳,获得30
31秒前
31秒前
31秒前
小柯完成签到,获得积分10
34秒前
Apple1234发布了新的文献求助10
36秒前
36秒前
lsc完成签到 ,获得积分10
37秒前
浮游应助summing采纳,获得10
37秒前
37秒前
酚醛树脂发布了新的文献求助10
37秒前
40秒前
化学之星完成签到,获得积分10
43秒前
verymiao完成签到 ,获得积分10
43秒前
BowieHuang应助syh5527029采纳,获得40
44秒前
hzwhz完成签到,获得积分10
50秒前
HuanChen完成签到 ,获得积分10
53秒前
Anlocia完成签到 ,获得积分10
54秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542985
求助须知:如何正确求助?哪些是违规求助? 4629125
关于积分的说明 14610877
捐赠科研通 4570403
什么是DOI,文献DOI怎么找? 2505738
邀请新用户注册赠送积分活动 1483053
关于科研通互助平台的介绍 1454361