Development and Validation of PRE-SARC (PREdiction of SARCopenia Risk in Community Older Adults) Sarcopenia Prediction Model

肌萎缩 医学 接收机工作特性 逻辑回归 人口 队列 风险评估 队列研究 老年学 内科学 环境卫生 计算机科学 计算机安全
作者
Taiping Lin,Rui Liang,Quhong Song,Hualong Liao,Miao Dai,Tingting Jiang,Xiangping Tu,Xiaoyu Shu,Xiaotao Huang,Ning Ge,Ke Wan,Jirong Yue
出处
期刊:Journal of the American Medical Directors Association [Elsevier BV]
卷期号:25 (9): 105128-105128 被引量:2
标识
DOI:10.1016/j.jamda.2024.105128
摘要

Objective Reliable identification of high-risk older adults who are likely to develop sarcopenia is essential to implement targeted preventive measures and follow-up. However, no sarcopenia prediction model is currently available for community use. Our objective was to develop and validate a risk prediction model for calculating the 1-year absolute risk of developing sarcopenia in an aging population. Methods One prospective population-based cohort of non-sarcopenic individuals aged 60 years or older were used for the development of a sarcopenia risk prediction model and model validation. Sarcopenia was defined according to the 2019 Asian Working Group for Sarcopenia consensus. Stepwise logistic regression was used to identify risk factors for sarcopenia incidence within a 1-year follow-up. Model performance was evaluated using the area under the receiver operating characteristics curve (AUROC) and calibration plot, respectively. Results The development cohort included 1042 older adults, among whom 87 participants developed sarcopenia during a 1-year follow-up. The PRE-SARC (PREdiction of SARCopenia Risk in community older adults) model can accurately predict the 1-year risk of sarcopenia by using 7 easily accessible community-based predictors. The PRE-SARC model performed well in predicting sarcopenia, with an AUROC of 87% (95% CI, 0.83-0.90) and good calibration. Internal validation showed minimal optimism, with an adjusted AUROC of 0.85. The prediction score was categorized into 4 risk groups: low (0%-10%), moderate (>10%-20%), high (>20%-40%), and very high (>40%). The PRE-SARC model has been incorporated into an online risk calculator, which is freely accessible for daily clinical applications (https://sarcopeniariskprediction.shinyapps.io/dynnomapp/). Conclusions In community-dwelling individuals, the PRE-SARC model can accurately predict 1-year sarcopenia incidence. This model serves as a readily available and free accessible tool to identify older adults at high risk of sarcopenia, thereby facilitating personalized early preventive approaches and optimizing the utilization of health care resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯尤金完成签到,获得积分10
2秒前
zcz发布了新的文献求助10
2秒前
7秒前
路过的热心群众完成签到,获得积分10
11秒前
12秒前
夜十五完成签到,获得积分10
12秒前
14秒前
科研强发布了新的文献求助10
16秒前
Owen应助scl采纳,获得10
17秒前
dennisysz发布了新的文献求助10
19秒前
19秒前
发哥完成签到 ,获得积分10
22秒前
ding应助玄音采纳,获得10
23秒前
11完成签到,获得积分10
24秒前
zho应助un采纳,获得10
25秒前
foster发布了新的文献求助10
26秒前
26秒前
笨笨芯应助意兴不阑珊采纳,获得10
26秒前
小马甲应助域名采纳,获得10
30秒前
31秒前
31秒前
33秒前
foster完成签到,获得积分10
34秒前
qianmo发布了新的文献求助10
35秒前
玄音发布了新的文献求助10
35秒前
37秒前
爱笑千万发布了新的文献求助20
39秒前
40秒前
JY发布了新的文献求助10
43秒前
qianmo完成签到,获得积分10
44秒前
46秒前
善良的剑通完成签到,获得积分10
54秒前
55秒前
wangermazi完成签到,获得积分0
57秒前
笑点低寒凡完成签到,获得积分20
58秒前
58秒前
顾矜应助JY采纳,获得10
58秒前
1分钟前
hansJAMA发布了新的文献求助10
1分钟前
JamesPei应助香蕉醉柳采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133