Breaking the size limitation of nonadiabatic molecular dynamics in condensed matter systems with local descriptor machine learning

动力学(音乐) 统计物理学 化学物理 分子动力学 活性物质 物理 计算机科学 经典力学 量子力学 生物 声学 细胞生物学
作者
Dongyu Liu,Bipeng Wang,Yifan Wu,Andrey S. Vasenko,Oleg V. Prezhdo
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (36) 被引量:8
标识
DOI:10.1073/pnas.2403497121
摘要

Nonadiabatic molecular dynamics (NA-MD) is a powerful tool to model far-from-equilibrium processes, such as photochemical reactions and charge transport. NA-MD application to condensed phase has drawn tremendous attention recently for development of next-generation energy and optoelectronic materials. Studies of condensed matter allow one to employ efficient computational tools, such as density functional theory (DFT) and classical path approximation (CPA). Still, system size and simulation timescale are strongly limited by costly ab initio calculations of electronic energies, forces, and NA couplings. We resolve the limitations by developing a fully machine learning (ML) approach in which all the above properties are obtained using neural networks based on local descriptors. The ML models correlate the target properties for NA-MD, implemented with DFT and CPA, directly to the system structure. Trained on small systems, the neural networks are applied to large systems and long timescales, extending NA-MD capabilities by orders of magnitude. We demonstrate the approach with dependence of charge trapping and recombination on defect concentration in MoS 2 . Defects provide the main mechanism of charge losses, resulting in performance degradation. Charge trapping slows with decreasing defect concentration; however, recombination exhibits complex dependence, conditional on whether it occurs between free or trapped charges, and relative concentrations of carriers and defects. Delocalized shallow traps can become localized with increasing temperature, changing trapping and recombination behavior. Completely based on ML, the approach bridges the gap between theoretical models and realistic experimental conditions and enables NA-MD on thousand-atom systems and many nanoseconds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王里走完成签到,获得积分10
刚刚
1秒前
2秒前
LZQ应助唐笑采纳,获得10
2秒前
jia发布了新的文献求助10
2秒前
zzZ_完成签到,获得积分10
3秒前
无花果应助相濡以沫采纳,获得10
3秒前
熊鸣笛关注了科研通微信公众号
4秒前
zjuroc完成签到 ,获得积分10
5秒前
baodingning完成签到,获得积分10
6秒前
6秒前
6秒前
摩登灰太狼完成签到,获得积分10
7秒前
8秒前
汉堡包应助Ain采纳,获得10
10秒前
zho应助青梅采纳,获得10
10秒前
追风筝的少女完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
不甜发布了新的文献求助10
12秒前
12秒前
13秒前
彩色不评发布了新的文献求助10
14秒前
沉默丹亦发布了新的文献求助30
14秒前
14秒前
相濡以沫发布了新的文献求助10
14秒前
15秒前
小二郎应助瓜瓜采纳,获得10
15秒前
kaikaiYelloew发布了新的文献求助10
16秒前
vic303发布了新的文献求助10
18秒前
云朵完成签到,获得积分10
18秒前
18秒前
19秒前
QXQ发布了新的文献求助30
20秒前
为为为发布了新的文献求助10
20秒前
科研通AI5应助洋芋锅巴采纳,获得10
21秒前
21秒前
慕青应助小李采纳,获得10
23秒前
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807102
求助须知:如何正确求助?哪些是违规求助? 3351867
关于积分的说明 10356328
捐赠科研通 3067877
什么是DOI,文献DOI怎么找? 1684778
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765767