狭窄
超声波
放射科
深度学习
计算机科学
人工智能
医学
心脏病学
内科学
作者
Mainak Biswas,Luca Saba,Mannudeep Kalra,Rajesh Singh,José Fernandes e Fernandes,Vijay Viswanathan,John R. Laird,Laura E Mantella,Amer M. Johri,Mostafa M. Fouda,Jasjit S. Suri
标识
DOI:10.1016/j.compmedimag.2024.102437
摘要
Cardiovascular diseases (CVD) cause 19 million fatalities each year and cost nations billions of dollars. Surrogate biomarkers are established methods for CVD risk stratification; however, manual inspection is costly, cumbersome, and error-prone. The contemporary artificial intelligence (AI) tools for segmentation and risk prediction, including older deep learning (DL) networks employ simple merge connections which may result in semantic loss of information and hence low in accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI