Fraud Detection by Integrating Multisource Heterogeneous Presence-Only Data

计算机科学 数据挖掘
作者
Yongqin Qiu,Yuanxing Chen,Kan Fang,Lean Yu,Kuangnan Fang
出处
期刊:Informs Journal on Computing 卷期号:37 (4): 998-1017
标识
DOI:10.1287/ijoc.2023.0366
摘要

In credit fraud detection practice, certain fraudulent transactions often evade detection because of the hidden nature of fraudulent behavior. To address this issue, an increasing number of positive-unlabeled (PU) learning techniques have been employed by more and more financial institutions. However, most of these methods are designed for single data sets and do not take into account the heterogeneity of data when they are collected from different sources. In this paper, we propose an integrative PU learning method (I-PU) for pooling information from multiple heterogeneous PU data sets. A novel approach that penalizes group differences is developed to explicitly and automatically identify the cluster structures of coefficients across different data sets, thus offering a plausible interpretation of heterogeneity. Furthermore, we apply a bilevel selection method to detect the sparse structure at both the group level and within-group level. Theoretically, we show that our proposed estimator has the oracle property. Computationally, we design an expectation-maximization (EM) algorithm framework and propose an alternating direction method of multipliers (ADMM) algorithm to solve it. Simulation results show that our proposed method has better numerical performance in terms of variable selection, parameter estimation, and prediction ability. Finally, a real-world application showcases the effectiveness of our method in identifying distinct coefficient clusters and its superior prediction performance compared with direct data merging or separate modeling. This result also offers valuable insights for financial institutions in developing targeted fraud detection systems. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72071169, 72231005, 72233002, and 72471169], the Fundamental Research Funds for the Central Universities of China [Grant 20720231060], the National Social Science Fund of China [Grant 21&ZD146], and Shuimu Tsinghua Scholar Program. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0366 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0366 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
活泼沫沫完成签到,获得积分10
2秒前
QLLW应助CYX采纳,获得10
2秒前
m同学发布了新的文献求助10
2秒前
孙靖博发布了新的文献求助10
3秒前
Lucas应助美好斓采纳,获得10
3秒前
morena发布了新的文献求助10
4秒前
PPP发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
jl发布了新的文献求助10
6秒前
6秒前
6秒前
爆米花应助雨醉东风采纳,获得10
7秒前
TCB完成签到,获得积分10
8秒前
AAA完成签到,获得积分10
8秒前
立行完成签到 ,获得积分10
9秒前
9秒前
10秒前
852应助Aero采纳,获得10
10秒前
小林完成签到,获得积分10
10秒前
隐形曼青应助不要加糖采纳,获得10
11秒前
11秒前
文娟Liu完成签到,获得积分10
11秒前
月亮完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
姜梨完成签到 ,获得积分10
12秒前
木子发布了新的文献求助10
12秒前
13秒前
13秒前
田心发布了新的文献求助20
13秒前
ccx981166完成签到,获得积分10
13秒前
13秒前
霍师傅发布了新的文献求助10
14秒前
卜星凡完成签到,获得积分10
15秒前
yongheng完成签到,获得积分10
15秒前
霸气店员完成签到,获得积分20
16秒前
努力熊熊完成签到,获得积分10
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610445
求助须知:如何正确求助?哪些是违规求助? 4694923
关于积分的说明 14885144
捐赠科研通 4722453
什么是DOI,文献DOI怎么找? 2545155
邀请新用户注册赠送积分活动 1509949
关于科研通互助平台的介绍 1473063